Groundwater recharge mechanism in an integrated tableland of the Loess Plateau, northern China: insights from environmental tracers

Assessing groundwater recharge characteristics (recharge rate, history, mechanisms (piston and preferential flow)) and groundwater age in arid and semi-arid environments remains a difficult but important research frontier. Such assessments are particularly important when the unsaturated zone (UZ) is thick and the recharge rate is limited. This study combined evaluations of the thick UZ with those of the saturated zone and used multiple tracers, such as Cl, NO3, Br, 2H, 18O, 13C, 3H and 14C, to study groundwater recharge characteristics in an integrated loess tableland in the Loess Plateau, China, where precipitation infiltration is the only recharge source for shallow groundwater. The results indicate that diffuse recharge beneath crops, as the main land use of the study area, is 55–71 mm yr−1 based on the chloride mass balance of soil profiles. The length of time required for annual precipitation to reach the water table is 160–400 yrs. The groundwater is all pre-modern water and paleowater, with corrected 14C age ranging from 136 to 23,412 yrs. Most of the water that eventually becomes recharge originally infiltrated in July–September. The Cl and NO3 contents in the upper UZ are considerably higher than those in the deep UZ and shallow groundwater because of recent human activities. The shallow groundwater has not been in hydraulic equilibrium with present near-surface boundary conditions. The homogeneous material of the UZ and relatively old groundwater age imply that piston flow is the dominant recharge mechanism for the shallow groundwater in the tableland.RésuméL’évaluation des caractéristiques de la recharge des eaux souterraines (taux de recharge, historique, mécanismes (piston et écoulement préférentiel)) et de l’âge des eaux souterraines dans les environnements semi-arides demeure un front de recherche difficile mais néanmoins important. De telles évaluations sont particulièrement importantes lorsque la zone non saturée (ZNS) est. épaisse et que le taux de recharge est. limité. Cette étude combine les évaluations de l’épaisse ZNS avec celles de la zone saturée et utilize des traceurs multiples, tels que Cl, NO3, Br, 2H, 18O, 13C, 3H et 14C, pour étudier les caractéristiques de la recharge des eaux souterraines dans une zone tabulaire intégrée dans le Plateau de Loess en Chine, où l’infiltration des précipitations est. la seule source de recharge pour les aquifères superficiels. Les résultats indiquent que la recharge diffuse sous les cultures, principale occupation des sols de la zone d’étude, est. de 55 à 71 mm par an à partir des bilans de chlorures dans les profils de sol. La durée nécessaire pour que les précipitations annuelles atteignent le niveau piézométrique est. de 160 à 400 ans. L’eau souterraine est. associée à une eau pré-moderne et à une eau fossile, avec un âge déterminé au 14C corrigé compris entre 136 à 23,412 années. La majeure partie de l’eau qui finalement constitue la recharge s’infiltre entre juillet et septembre. Les concentrations en Cl et NO3 dans la partie supérieure de la ZNS sont considérablement plus élevées que dans la partie profonde de la ZNS et dans l’eau souterraine superficielle à cause des activités anthropiques récentes. L’eau souterraine superficielle n’est. pas encore à l’équilibre hydraulique avec les conditions aux limites actuelles proches de la surface. Le matériel homogène de la ZNS et l’âge relativement vieux des eaux souterraines impliquent que l’écoulement de type piston est. le mécanisme de recharge dominant pour les aquifères superficiels dans la zone tabulaire.ResumenLa evaluación de las características de la recarga del agua subterránea (tasa de recarga, historia, mecanismos (flujo pistón y preferencial)) y la edad del agua subterránea en ambientes semiáridos sigue siendo un límite difícil pero importante para la investigación. Tales evaluaciones son particularmente importantes cuando la zona no saturada (UZ) es potente y la velocidad de recarga es limitada. Este estudio combinó evaluaciones de una potente UZ con aquellas de la zona saturada y se usaron múltiples trazadores, como Cl, NO3, Br, 2H, 18O, 13C, 3H y 14C, para estudiar las características de la recarga del agua subterránea en una meseta integrada de loess en el Loess Plateau, China, donde la infiltración de la precipitación es la única fuente de recarga para el agua subterránea poco profunda. Los resultados indican que la recarga difusa debajo de los cultivos, como el principal uso de la tierra del área de estudio, es de 55–71 mm año−1 basado en el balance de masa de cloruro en los perfiles de suelo. El tiempo requerido para que la precipitación anual llegue a la capa freática es de 160–400 años. El agua subterránea es toda agua pre-moderna y agua fósil, con edades corregidas de 14C que van desde 136 a 23,412 años. La mayor parte del agua que eventualmente se convierte en recarga se infiltró originalmente en julio-septiembre. El contenido de Cl y NO3 en la UZ superior son considerablemente más altos que los de la UZ profunda y del agua subterránea somera debido a las actividades humanas recientes. El agua subterránea poco profunda no ha estado en equilibrio hidráulico con las actuales condiciones del límite cercano a la superficie. El material homogéneo de la UZ y la edad del agua subterránea relativamente antiguo implican que el flujo pistón es el mecanismo dominante para la recarga del agua subterránea poco profunda en la meseta.摘要评价半干旱地区地下水补给特征(补给量、补给历史和补给机制,如活塞流和捷径流)和地下水年龄虽比较困难,但仍是一个重要的研究前沿,特别对于包气带较厚和补给量有限的地区。本文将巨厚包气带和饱和带结合起来,利用多种环境示踪剂,如Cl、NO3、Br、2H、18O、13C、3H和14C,研究了黄土高原某典型黄土塬区地下水补给特征,其降水入渗是该塬区浅层地下水的唯一补给来源。结果显示作为区域主要的土地利用类型,在农田条件下基于包气带氯质量平衡方法确定出补给量为55–71 mm yr−1。年降水入渗到地下水水位的时间在160年到400年。地下水和泉水均是次现代水或古水(不含氚),其14C校正年龄在136到23,412年。地下水主要受7到9月份降水补给。包气带浅部Cl和NO3含量显著高于包气带深部和潜水中的含量,主要受近期人类活动的影响。浅层地下水尚未与目前近地表过程达到水力平衡。黄土均匀的土壤质地特征及相对较老的地下水年龄揭示均匀的活塞流入渗是黄土塬区浅层地下水补给的主要方式。ResumoAvaliar as características da recarga das águas subterrâneas (taxa de recarga, histórico, mecanismo (fluxo de pistão e preferencial)) e a idade das águas subterrâneas em ambientes semiáridos continua sendo uma fronteira de pesquisa difícil, porém importante. Tais avaliações são particularmente importantes quando a zona não saturada (ZNS) é espessa e a taxa de recarga limitada. Esse estudo combinou avaliações da ZNS espessa com aquelas de zona saturada e utilizou traçadores múltiplos, como Cl, NO3, Br, 2H, 18O, 13C, 3H e 14C, para estudar as características da recarga das águas subterrâneas em um planalto loesse integrado no Platô Loesse, China, onde a infiltração da precipitação é a única fonte de recarga para as águas subterrâneas rasas. Os resultados indicam que a recarga difusa sob os cultivos, como principal uso da terra na área de estudo, é 55–71 mm ano−1 baseado no balanço de massa de cloreto dos perfis de solo. O período de tempo necessário para a precipitação anual atingir o lençol freático é de 160–400 anos. As águas subterrâneas são todas águas pré-moderna e paleolítica, com idade corrigida por 14C atingindo de 136 a 23,412 anos. A maioria da água que eventualmente se tornam recarga infiltrou-se originalmente em julho-setembro. Os conteúdos de Cl e NO3 na ZNS superior são consideravelmente maiores que na ZNS mais profunda e águas subterrâneas rasas por causa das atividades humanas recentes. As águas subterrâneas rasas não estão em equilíbrio hidráulico com as condições de fronteira próxima a superfície. O material homogêneo da ZNS e a idade das águas subterrâneas relativamente velhas implicam que o fluxo de pistão é o mecanismo de recarga dominante para as águas subterrâneas rasas no planalto.

[1]  G. Walker,et al.  Salinization of a Fresh Palaeo‐Ground Water Resource by Enhanced Recharge , 2003, Ground water.

[2]  W. Edmunds,et al.  Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/hyp.6335 Global synthesis of groundwater recharge in semiarid andaridregions , 2022 .

[3]  J. H. Feth Chloride in natural continental water--A review , 1981 .

[4]  Dongmei Han,et al.  Recharge history and controls on groundwater quality in the Yuncheng Basin, north China , 2010 .

[5]  J. Böhlke,et al.  Groundwater recharge and agricultural contamination , 2002 .

[6]  R. Reedy,et al.  Inventories and mobilization of unsaturated zone sulfate, fluoride, and chloride related to land use change in semiarid regions, southwestern United States and Australia , 2009 .

[7]  I. Clark,et al.  Environmental Isotopes in Hydrogeology , 1997 .

[8]  M. Dettinger Reconnaissance estimates of natural recharge to desert basins in Nevada, U.S.A. by using chloride-balance calculations , 1989 .

[9]  Tianming Huang,et al.  Mapping groundwater renewability using age data in the Baiyang alluvial fan, NW China , 2017, Hydrogeology Journal.

[10]  T. Gleeson,et al.  The global volume and distribution of modern groundwater , 2016 .

[11]  Z. An,et al.  Variation of soil Δδ13C values in Xifeng loess-paleosol sequence and its paleoenvironmental implication , 2006 .

[12]  S. Schiff,et al.  Evaluating Dissolved Inorganic Carbon Cycling in a Forested Lake Watershed Using Carbon Isotopes , 1992, Radiocarbon.

[13]  Glen R. Walker,et al.  Land clearance and river salinisation in the western Murray Basin, Australia , 1990 .

[14]  J. Bradd,et al.  Temporal variation of stable isotopes in a precipitation–groundwater system: implications for determining the mechanism of groundwater recharge in high mountain–hills of the Loess Plateau, China , 2016 .

[15]  Dale W. Johnson,et al.  Atmospheric Deposition and Forest Nutrient Cycling , 1992, Ecological Studies.

[16]  M. Hughes,et al.  The use of environmental chloride and tritium to estimate total recharge to an unconfined aquifer , 1978 .

[17]  W. Roether,et al.  Downward Movement of Soil Moisture Traced by Means of Hydrogen Isotopes , 2013 .

[18]  R. Striegl,et al.  CO2 dynamics in the Amargosa Desert: Fluxes and isotopic speciation in a deep unsaturated zone , 2005 .

[19]  Wei Zhang,et al.  Nitrate pollution of groundwater in northern China , 1996 .

[20]  Zhonghe Pang,et al.  Groundwater recharge in an arid grassland as indicated by soil chloride profile and multiple tracers , 2017 .

[21]  Z. Zhang,et al.  Study of soil water movement and recharge rate of rainfall infiltration in aeration zone of loess by measuring natural tritium. , 1990 .

[22]  T. Wigley Carbon-14 dating of groundwater from closed and open systems , 1975 .

[23]  Jin-zhong Yang,et al.  Analysis of rainfall-recharge relationships , 1996 .

[24]  Tianming Huang,et al.  How much information can soil solute profiles reveal about groundwater recharge? , 2016, Geosciences Journal.

[25]  K. Wei,et al.  Tritium profiles of pore water in the Chinese loess unsaturated zone: Implications for estimation of groundwater recharge , 2006 .

[26]  J. Garnier,et al.  Determination of the initial 14C activity of the total dissolved carbon: A review of the existing models and a new approach , 1979 .

[27]  Zhonghe Pang,et al.  Estimating groundwater recharge following land-use change using chloride mass balance of soil profiles: a case study at Guyuan and Xifeng in the Loess Plateau of China , 2011 .

[28]  J. Vogel,et al.  Isotopic composition of groundwater in semi-arid regions of southern Africa , 1975 .

[29]  N. W. Foster,et al.  Retention or Loss of N in IFS Sites and Evaluation of Relative Importance of Processes , 1992 .

[30]  Stephen H. Conrad,et al.  Soil‐water flux in the Southern Great Basin, United States: Temporal and spatial variations over the last 120,000 years , 1996 .

[31]  D. K. Solomon,et al.  3H and 3He , 2000 .

[32]  R. Michel Tritium in the Hydrologic Cycle , 2005 .

[33]  S. Malhi,et al.  Accumulation of nitrate-N in the soil profile and its implications for the environment under dryland agriculture in northern China: A review , 2010 .

[34]  G. Kukla,et al.  Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years , 1991, Quaternary Research.

[35]  M. Shao,et al.  Soil desiccation in the Loess Plateau of China , 2008 .

[36]  Tianming Huang,et al.  Paleo-environment from isotopes and hydrochemistry of groundwater in East Junggar Basin, Northwest China , 2015 .

[37]  D. Ronen,et al.  The unsaturated zone — a neglected component of nature , 2005 .

[38]  I. Winograd,et al.  Deep Oxygenated Ground Water: Anomaly or Common Occurrence? , 1982, Science.

[39]  Daniel Hillel,et al.  Groundwater recharge in arid regions: Review and critique of estimation methods , 1988 .

[40]  Lu Zhang,et al.  Impacts of soil conservation on groundwater recharge in the semi-arid Loess Plateau, China , 2011 .

[41]  P. Cook,et al.  Factors affecting carbon-14 activity of unsaturated zone CO2 and implications for groundwater dating , 2014 .

[42]  P. Cook,et al.  A new chloride leaching approach to the estimation of diffuse recharge following a change in land use , 1991 .

[43]  Z. Ding,et al.  Warming-induced northwestward migration of the East Asian monsoon rain belt from the Last Glacial Maximum to the mid-Holocene , 2015, Proceedings of the National Academy of Sciences.

[44]  Jiansheng Chen,et al.  Isotopic constraints on the origin of groundwater in the Ordos Basin of northern China , 2012, Environmental Earth Sciences.

[45]  H. Laudelout,et al.  Movement of nitrite through a loess soil , 1988 .

[46]  Tianming Huang,et al.  Limits to recharge of groundwater from Tibetan plateau to the Gobi desert, implications for water management in the mountain front , 2009 .

[47]  D. Solomon,et al.  On the isotopic composition of carbon in soil carbon dioxide , 1991 .

[48]  K. Muinonen,et al.  Determination of Initial Eigenorbits for Asteroids , 1997 .

[49]  David W. Johnson,et al.  Atmospheric deposition and forest nutrient cycling. A synthesis of the Integrated Forest Study. , 1992 .

[50]  Tianming Huang,et al.  Nitrate in groundwater and the unsaturated zone in (semi)arid northern China: baseline and factors controlling its transport and fate , 2013, Environmental Earth Sciences.

[51]  F. Barbecot,et al.  Open to closed system transition traced through the TDIC isotopic signature at the aquifer recharge stage, implications for groundwater 14C dating , 2009 .

[52]  F. Heller,et al.  Magnetostratigraphical dating of loess deposits in China , 1982, Nature.

[53]  W. Edmunds Geochemistry's vital contribution to solving water resource problems. , 2009 .

[54]  J. Vogel INVESTIGATION OF GROUNDWATER FLOW WITH RADIOCARBON. , 1968 .

[55]  Zhonghe Pang,et al.  Soil profile evolution following land-use change: implications for groundwater quantity and quality , 2013 .

[56]  P. Shand,et al.  Natural groundwater quality , 2008 .

[57]  X. Jianming,et al.  Paleoclimatic interpretation of the past 30 ka from isotopic studies of the deep confined aquifer of the North China plain , 2003 .

[58]  R. Striegl,et al.  Constraining the Inferred Paleohydrologic Evolution of a Deep Unsaturated Zone in the Amargosa Desert , 2004 .

[59]  W. Edmunds,et al.  Naturally high nitrate concentrations in groundwaters from the Sahel , 1997 .

[60]  W. Edmunds,et al.  A geochemical and isotopic approach to recharge evaluation in semi-arid zones; past and present , 1980 .

[61]  Paul Koeniger,et al.  Review on soil water isotope‐based groundwater recharge estimations , 2016 .

[62]  Hong Yang,et al.  δ13C Values of loess total carbonate: A sensitive proxy for Asian summer monsoon in arid northwestern margin of the Chinese loess plateau , 2011 .

[63]  F. J. Pearson,et al.  Sources of dissolved carbonate species in groundwater and their effects on carbon-14 dating , 1970 .

[64]  B. Scanlon,et al.  Estimating groundwater recharge in a cold desert environment in northern China using chloride , 2008 .

[65]  Jirka Šimůnek,et al.  Infiltration in layered loessial deposits: Revised numerical simulations and recharge assessment , 2016 .

[66]  W. Aeschbach–Hertig,et al.  Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, North West China , 2006 .

[67]  Dongsheng Liu,et al.  Loess and the environment , 1985 .

[68]  E. Mazor,et al.  Chemical and Isotopic Groundwater Hydrology , 2003 .

[69]  Tianming Huang,et al.  Changes in groundwater induced by water diversion in the Lower Tarim River, Xinjiang Uygur, NW China: Evidence from environmental isotopes and water chemistry , 2010 .

[70]  C.A.J. Appelo,et al.  User's guide to PHREEQC - a computer program for speciation,batch-reaction, one-dimensional transport, and inversegeochemical calculations. , 1999 .

[71]  A. Herczeg,et al.  Review: Environmental tracers in arid-zone hydrology , 2011 .

[72]  Weiguo Liu,et al.  An isotope study (δ18O and δD) of water movements on the Loess Plateau of China in arid and semiarid climates , 2016 .

[73]  I. Goni,et al.  Rainfall geochemistry in the Sahel region of northern Nigeria , 2001 .

[74]  J. Böhlke,et al.  Ecohydrological factors affecting nitrate concentrations in a phreatic desert aquifer in northwestern China. , 2008, Environmental science & technology.

[75]  C. Mouvet,et al.  Field data and modelling of water and nitrate movement through deep unsaturated loess , 2007 .

[76]  D. L. Parkhurst,et al.  User's guide to PHREEQC (Version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations , 1999 .

[77]  J. Vogel Variability of Carbon Isotope Fractionation during Photosynthesis , 1993 .