Introduction: Key Subroutines of Multimedia Data Management

This chapter presents technical challenges that multimedia information management faces. We enumerate five key subroutines required to work together effectively so as to enable robust and scalable solutions. We provide pointers to the rest of the book, where in-depth treatments are presented.

[1]  Shi-Min Hu,et al.  Adaptive tree similarity learning for image retrieval , 2003, Multimedia Systems.

[2]  Rafail Ostrovsky,et al.  Efficient search for approximate nearest neighbor in high dimensional spaces , 1998, STOC '98.

[3]  Ronald Fagin,et al.  Efficient similarity search and classification via rank aggregation , 2003, SIGMOD '03.

[4]  Thomas S. Huang,et al.  Optimizing learning in image retrieval , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[5]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[6]  Edward Y. Chang,et al.  Parallelizing Support Vector Machines on Distributed Computers , 2007, NIPS.

[7]  Honglak Lee,et al.  Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations , 2009, ICML '09.

[8]  Jeremy Buhler,et al.  Efficient large-scale sequence comparison by locality-sensitive hashing , 2001, Bioinform..

[9]  Hans-Jörg Schek,et al.  A Quantitative Analysis and Performance Study for Similarity-Search Methods in High-Dimensional Spaces , 1998, VLDB.

[10]  Ramesh C. Jain,et al.  Similarity indexing with the SS-tree , 1996, Proceedings of the Twelfth International Conference on Data Engineering.

[11]  David Heckerman,et al.  A Bayesian Approach to Learning Causal Networks , 1995, UAI.

[12]  Edward Y. Chang,et al.  Parallel Spectral Clustering , 2008, ECML/PKDD.

[13]  Robert L. Goldstone Similarity, interactive activation, and mapping , 1994 .

[14]  D. Medin,et al.  The role of theories in conceptual coherence. , 1985, Psychological review.

[15]  Marco Patella,et al.  PAC nearest neighbor queries: Approximate and controlled search in high-dimensional and metric spaces , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).

[16]  A. Tversky Features of Similarity , 1977 .

[17]  Jon M. Kleinberg,et al.  Two algorithms for nearest-neighbor search in high dimensions , 1997, STOC '97.

[18]  Edward Y. Chang,et al.  EXTENT: fusing context, content, and semantic ontology for photo annotation , 2005, CVDB '05.

[19]  Piotr Indyk,et al.  Similarity Search in High Dimensions via Hashing , 1999, VLDB.

[20]  Charu C. Aggarwal,et al.  Towards systematic design of distance functions for data mining applications , 2003, KDD '03.

[21]  Edward Y. Chang,et al.  Clustering for Approximate Similarity Search in High-Dimensional Spaces , 2002, IEEE Trans. Knowl. Data Eng..

[22]  Piotr Indyk,et al.  Approximate nearest neighbors: towards removing the curse of dimensionality , 1998, STOC '98.

[23]  Thomas S. Huang,et al.  Comparing discriminating transformations and SVM for learning during multimedia retrieval , 2001, MULTIMEDIA '01.

[24]  Edward Y. Chang,et al.  Enhanced perceptual distance functions and indexing for image replica recognition , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Edward Y. Chang,et al.  Combinational collaborative filtering for personalized community recommendation , 2008, KDD.

[26]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[27]  Zhiyuan Liu,et al.  PLDA+: Parallel latent dirichlet allocation with data placement and pipeline processing , 2011, TIST.

[28]  P. Cheng,et al.  Assessing interactive causal influence. , 2004, Psychological review.

[29]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[30]  Tomaso Poggio,et al.  Learning a dictionary of shape-components in visual cortex: comparison with neurons, humans and machines , 2006 .

[31]  Edward Y. Chang,et al.  Support vector machine active learning for image retrieval , 2001, MULTIMEDIA '01.

[32]  Shin'ichi Satoh,et al.  The SR-tree: an index structure for high-dimensional nearest neighbor queries , 1997, SIGMOD '97.

[33]  Kenneth L. Clarkson,et al.  An algorithm for approximate closest-point queries , 1994, SCG '94.

[34]  Edward Y. Chang,et al.  Pfp: parallel fp-growth for query recommendation , 2008, RecSys '08.

[35]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.