Orientation-Dependent Oxygen Evolution on RuO2 without Lattice Exchange
暂无分享,去创建一个
Yang Shao-Horn | Liang Qiao | Tejs Vegge | Heine Anton Hansen | Marc T. M. Koper | Rasmus Frydendal | Ifan E. L. Stephens | Jan Rossmeisl | Reshma R. Rao | Y. Shao-horn | J. Rossmeisl | H. Hansen | K. Stoerzinger | T. Vegge | M. Koper | Niels Bendtsen Halck | I. Stephens | L. Qiao | Kelsey A. Stoerzinger | Oscar Diaz-Morales | Oscar Diaz-Morales | Manuel J. Kolb | Xiao Renshaw Wang | M. Kolb | R. Frydendal | N. Halck
[1] J. Nørskov,et al. Electrolysis of water on oxide surfaces , 2007 .
[2] John Kitchin,et al. Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces , 2011 .
[3] S. Trasatti,et al. Ruthenium dioxide-based film electrodes , 1978 .
[4] Jan Rossmeisl,et al. Beyond the volcano limitations in electrocatalysis--oxygen evolution reaction. , 2014, Physical chemistry chemical physics : PCCP.
[5] T. Jacob,et al. Ligand Effects and Their Impact on Electrocatalytic Processes Exemplified with the Oxygen Evolution Reaction (OER) on RuO2(110) , 2015 .
[6] Dirk Rosenthal,et al. Exploring Pretreatment–Morphology Relationships: Ab Initio Wulff Construction for RuO2 Nanoparticles under Oxidising Conditions , 2013, 1303.4203.
[7] M. Lyons,et al. Mechanism of oxygen reactions at porous oxide electrodes. Part 2--Oxygen evolution at RuO2, IrO2 and Ir(x)Ru(1-x)O2 electrodes in aqueous acid and alkaline solution. , 2011, Physical chemistry chemical physics : PCCP.
[8] Yang Shao-Horn,et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. , 2017, Nature chemistry.
[9] L. Burke,et al. Mechanism of oxygen reactions at porous oxide electrodes. Part 1.—Oxygen evolution at RuO2 and RuxSn1–xO2 electrodes in alkaline solution under vigorous electrolysis conditions , 1987 .
[10] F. Calle‐Vallejo,et al. Electrochemical water splitting by gold: evidence for an oxide decomposition mechanism , 2013 .
[11] M. Wohlfahrt‐Mehrens,et al. Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry , 1987 .
[12] Zhichuan J. Xu,et al. A Facile Synthesis of Size-Controllable IrO2 and RuO2 Nanoparticles for the Oxygen Evolution Reaction , 2016, Electrocatalysis.
[13] W. O'grady,et al. Single crystals as model electrocatalysts: Oxygen evolution on RuO2 (110) , 1986 .
[14] P. Krtil,et al. Oxygen evolution on nanocrystalline RuO2 and Ru0.9Ni0.1O2―δ electrodes ― DEMS approach to reaction mechanism determination , 2009 .
[15] S. Trasatti. Electrocatalysis by oxides — Attempt at a unifying approach , 1980 .
[16] M. Koper,et al. On-line mass spectrometry system for measurements at single-crystal electrodes in hanging meniscus configuration , 2006 .
[17] K. Reuter,et al. Structure sensitivity in oxide catalysis: First-principles kinetic Monte Carlo simulations for CO oxidation at RuO2(111). , 2015, The Journal of chemical physics.
[18] Nenad M. Markovic,et al. The road from animal electricity to green energy: combining experiment and theory in electrocatalysis , 2012 .
[19] Y. Shao-horn,et al. Orientation-Dependent Oxygen Evolution Activities of Rutile IrO2 and RuO2. , 2014, The journal of physical chemistry letters.
[20] Robert Schlögl,et al. Electrocatalytic Oxygen Evolution Reaction in Acidic Environments – Reaction Mechanisms and Catalysts , 2017 .
[21] Huixin Chen,et al. Oxygen evolution on aged IrOx/Ti electrodes in alkaline solutions , 2007 .
[22] Y. Shao-horn,et al. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. , 2012, The journal of physical chemistry letters.
[23] I. Chorkendorff,et al. Benchmarking the Stability of Oxygen Evolution Reaction Catalysts: The Importance of Monitoring Mass Losses , 2014 .
[24] Antoni Llobet,et al. A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. , 2012, Nature chemistry.
[25] O. J. Murphy,et al. Cyclic voltammetry as a technique for determining the surface area of RuO2 electrodes , 1979 .
[26] S. Trasatti. Electrocatalysis in the anodic evolution of oxygen and chlorine , 1984 .