A reaction network approach to the convergence to equilibrium of quantum Boltzmann equations for Bose gases

When the temperature of a trapped Bose gas is below the Bose-Einstein transition temperature and above absolute zero, the gas is composed of two distinct components: the Bose-Einstein condensate and the cloud of thermal excitations. The dynamics of the excitations can be described by quantum Boltzmann models. We establish a connection between quantum Boltzmann models and chemical reaction networks. We prove that the discrete differential equations for these quantum Boltzmann models converge to an equilibrium point. Moreover, this point is unique for all initial conditions that satisfy the same conservation laws. In the proof, we then employ a toric dynamical system approach, similar to the one used to prove the global attractor conjecture, to study the convergence to equilibrium of quantum kinetic equations.

[1]  B. Levi Cornell, Ketterle, and Wieman share Nobel Prize for Bose-Einstein condensates , 2001 .

[2]  C. Villani Chapter 2 – A Review of Mathematical Topics in Collisional Kinetic Theory , 2002 .

[3]  Minh-Binh Tran,et al.  On the dynamics of finite temperature trapped Bose gases , 2016, 1609.07686.

[4]  Shi Jin,et al.  Quantum hydrodynamic approximations to the finite temperature trapped Bose gases , 2017, Physica D: Nonlinear Phenomena.

[5]  P. T. Nam,et al.  Bogoliubov Spectrum of Interacting Bose Gases , 2012, 1211.2778.

[6]  T. Nikuni,et al.  Dynamics of Trapped Bose Gases at Finite Temperatures , 1999, cond-mat/9903029.

[7]  Horng-Tzer Yau,et al.  Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate , 2004, math-ph/0606017.

[8]  L. Reichl A modern course in statistical physics , 1980 .

[9]  David Angeli,et al.  Persistence Results for Chemical Reaction Networks with Time-Dependent Kinetics and No Global Conservation Laws , 2011, SIAM J. Appl. Math..

[10]  P. Zoller,et al.  Quantum kinetic theory: A quantum kinetic master equation for condensation of a weakly interacting Bose gas without a trapping potential , 1996, quant-ph/9611043.

[11]  C. Villani,et al.  On the trend to global equilibrium in spatially inhomogeneous entropy‐dissipating systems: The linear Fokker‐Planck equation , 2001 .

[12]  R. Glassey,et al.  The Cauchy Problem in Kinetic Theory , 1987 .

[13]  Pair Excitations and the Mean Field Approximation of Interacting Bosons, I , 2012, 1208.3763.

[14]  Sakinah,et al.  Vol. , 2020, New Medit.

[15]  Niclas Bernhoff Boundary layers for discrete kinetic models: Multicomponent mixtures, polyatomic molecules, bimolecular reactions, and quantum kinetic equations , 2017 .

[16]  Sergio Rica,et al.  Self-similar Singularities in the Kinetics of Condensation , 2006 .

[17]  Ezra Miller,et al.  A Geometric Approach to the Global Attractor Conjecture , 2013, SIAM J. Appl. Dyn. Syst..

[18]  Gheorghe Craciun,et al.  Polynomial Dynamical Systems, Reaction Networks, and Toric Differential Inclusions , 2019, SIAM J. Appl. Algebra Geom..

[19]  Minh-Binh Tran,et al.  The Cauchy problem for the quantum Boltzmann equation for bosons at very low temperature , 2016 .

[20]  Federica Pezzotti,et al.  Analytical approach to relaxation dynamics of condensed Bose gases , 2010, 1008.0714.

[21]  R. Seiringer The Excitation Spectrum for Weakly Interacting Bosons , 2010, 1008.5349.

[22]  Fedor Nazarov,et al.  Persistence and Permanence of Mass-Action and Power-Law Dynamical Systems , 2010, SIAM J. Appl. Math..

[23]  P. Lions,et al.  On the Cauchy problem for Boltzmann equations: global existence and weak stability , 1989 .

[24]  G. Craciun,et al.  A reaction network approach to the theory of acoustic wave turbulence , 2019, 1901.03005.

[25]  J. Velázquez,et al.  Finite time blow-up and condensation for the bosonic Nordheim equation , 2012, 1206.5410.

[26]  Semikoz,et al.  Kinetics of Bose condensation. , 1995, Physical review letters.

[27]  W. Ketterle,et al.  Observation of Interference Between Two Bose Condensates , 1997, Science.

[28]  L. Nordheim,et al.  On the Kinetic Method in the New Statistics and Its Application in the Electron Theory of Conductivity , 1928 .

[29]  Y. Pomeau,et al.  Statistical Physics of Non Equilibrium Quantum Phenomena , 2019, Lecture Notes in Physics.

[30]  R. Peierls,et al.  Zur kinetischen Theorie der Wärmeleitung in Kristallen , 1929 .

[31]  Y. Pomeau,et al.  On a thermal cloud—Bose–Einstein condensate coupling system , 2021, The European Physical Journal Plus.

[32]  Gheorghe Craciun,et al.  Toric Differential Inclusions and a Proof of the Global Attractor Conjecture , 2015, 1501.02860.

[33]  Xuguang Lu The Boltzmann Equation for Bose–Einstein Particles: Velocity Concentration and Convergence to Equilibrium , 2005 .

[34]  Alicia Dickenstein,et al.  Toric dynamical systems , 2007, J. Symb. Comput..

[35]  Leif Arkeryd,et al.  Bose Condensates in Interaction with Excitations: A Kinetic Model , 2012, Communications in Mathematical Physics.

[36]  Y. Pomeau,et al.  Theorie cinétique d'un gaz de Bose dilué avec condensat , 1999 .

[37]  P. Zoller,et al.  Quantum kinetic theory. III. Quantum kinetic master equation for strongly condensed trapped systems , 1997, cond-mat/9712002.

[38]  Bao Quoc Tang,et al.  Trend to Equilibrium for Reaction-Diffusion Systems Arising from Complex Balanced Chemical Reaction Networks , 2016, SIAM J. Math. Anal..

[39]  T. Allemand Derivation of a two-fluids model for a Bose gas from a quantum kinetic system , 2008, 0812.1721.

[40]  M. Bonitz Quantum Kinetic Theory , 2015 .

[41]  I. Sigal,et al.  The time-dependent Hartree–Fock–Bogoliubov equations for Bosons , 2016, Journal of Evolution Equations.

[42]  P. Smedt,et al.  On the dynamics of Bose-Einstein condensation , 1984 .

[43]  L. Muñoz,et al.  ”QUANTUM THEORY OF SOLIDS” , 2009 .

[44]  P. Zoller,et al.  KINETICS OF BOSE-EINSTEIN CONDENSATION IN A TRAP , 1997 .

[45]  Gheorghe Craciun,et al.  Mathematical Analysis of Chemical Reaction Systems , 2018, 1805.10371.

[46]  Minh-Binh Tran,et al.  On the Kinetic Equation in Zakharov's Wave Turbulence Theory for Capillary Waves , 2017, SIAM J. Math. Anal..

[47]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[48]  Minh-Binh Tran,et al.  On coupling kinetic and Schrödinger equations , 2016, Journal of Differential Equations.

[49]  Toan T. Nguyen,et al.  Uniform in Time Lower Bound for Solutions to a Quantum Boltzmann Equation of Bosons , 2016, Archive for Rational Mechanics and Analysis.

[50]  Cédric Villani,et al.  On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation , 2005 .

[51]  A. Nouri,et al.  A Milne problem from a Bose condensate with excitations , 2013 .

[52]  M. Feinberg Complex balancing in general kinetic systems , 1972 .

[53]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[54]  L. Reichl,et al.  A kinetic model for very low temperature dilute Bose gases , 2017, 1709.09982.

[55]  Martin Feinberg,et al.  Multiple Equilibria in Complex Chemical Reaction Networks: Semiopen Mass Action Systems * , 2022 .

[56]  T. R. Kirkpatrick,et al.  Transport theory for a weakly interacting condensed Bose gas , 1983 .

[57]  T. R. Kirkpatrick,et al.  Transport in a dilute but condensed nonideal Bose gas: Kinetic equations , 1985 .

[58]  Coherent Versus Incoherent Dynamics During Bose-Einstein Condensation in Atomic Gases , 1998, cond-mat/9805393.

[59]  Niclas Bernhoff Half-Space Problems for a Linearized Discrete Quantum Kinetic Equation , 2015 .

[60]  Xuguang Lu The Boltzmann Equation for Bose-Einstein Particles: Condensation in Finite Time , 2013 .

[61]  J. Yngvason,et al.  Quantum Hall states of bosons in rotating anharmonic traps , 2012, 1212.1085.

[62]  Martin Feinberg,et al.  Multiple Equilibria in Complex Chemical Reaction Networks: I. the Injectivity Property * , 2006 .

[63]  Murad Banaji,et al.  Graph-theoretic approaches to injectivity and multiple equilibria in systems of interacting elements , 2009, 0903.1190.

[64]  F. Horn Necessary and sufficient conditions for complex balancing in chemical kinetics , 1972 .

[65]  Minh-Binh Tran,et al.  The Cauchy problem and BEC stability for the quantum Boltzmann-Condensation system for bosons at very low temperature , 2016, 1609.07467.

[66]  Friedrich Hasenöhrl,et al.  Neuer Beweis zweier Sätze über das Wärmegleichgewicht unter mehratomigen Gasmolekülen , 2012 .

[67]  L. Reichl,et al.  A kinetic equation for ultra-low temperature Bose–Einstein condensates , 2019, Journal of Physics A: Mathematical and Theoretical.

[68]  Erich D. Gust,et al.  Collision Integrals in the Kinetic Equations of dilute Bose-Einstein Condensates , 2012, 1202.3418.

[69]  A. Pizzo,et al.  Dynamics of sound waves in an interacting Bose gas , 2014, 1406.1590.

[70]  D. V. Semikoz,et al.  Condensation of bosons in the kinetic regime , 1997 .

[71]  Xuguang Lu,et al.  The Spatially Homogeneous Boltzmann Equation for Bose–Einstein Particles: Rate of Strong Convergence to Equilibrium , 2018, Journal of Statistical Physics.

[72]  Pierre Lallemand,et al.  Dynamical formation of a Bose–Einstein condensate , 2001 .

[73]  R. Jackson,et al.  General mass action kinetics , 1972 .

[74]  Matthew J. Davis,et al.  Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics , 2013 .

[75]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[76]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .

[77]  Xuguang Lu On Isotropic Distributional Solutions to the Boltzmann Equation for Bose-Einstein Particles , 2004 .

[78]  David F. Anderson,et al.  A Proof of the Global Attractor Conjecture in the Single Linkage Class Case , 2011, SIAM J. Appl. Math..

[79]  Y. Pomeau,et al.  Nonlinear aspects of the theory of Bose-Einstein condensates , 2001 .

[80]  U. Eckern Relaxation processes in a condensed Bose gas , 1984 .

[81]  M. Feinberg The existence and uniqueness of steady states for a class of chemical reaction networks , 1995 .

[82]  J. Bauer,et al.  Chemical reaction network theory for in-silico biologists , 2003 .

[83]  Herbert Spohn,et al.  Kinetics of Bose–Einstein Condensation , 2015 .

[84]  Raphael Aronson,et al.  Theory and application of the Boltzmann equation , 1976 .

[85]  E. A. Uehling,et al.  Transport Phenomena in Einstein-Bose and Fermi-Dirac Gases. I , 1933 .

[86]  Erich D. Gust,et al.  Relaxation Rates and Collision Integrals for Bose-Einstein Condensates , 2012, 1207.6591.

[87]  Minh-Binh Tran,et al.  Optimal local well-posedness theory for the kinetic wave equation , 2017, Journal of Functional Analysis.

[88]  Quasiparticle Kinetic Equation in a Trapped Bose Gas at Low Temperatures , 2000, cond-mat/0010107.

[89]  P. Pickl,et al.  Bogoliubov corrections and trace norm convergence for the Hartree dynamics , 2016, Reviews in Mathematical Physics.

[90]  Wolfgang Ketterle,et al.  Bose–Einstein condensation of atomic gases , 2002, Nature.

[91]  P. Törmä,et al.  Quantum Gas Experiments - Exploring Many-Body States , 2014 .

[92]  Leslie M. Smith,et al.  On the wave turbulence theory for stratified flows in the ocean , 2017, Mathematical Models and Methods in Applied Sciences.

[93]  Minh-Binh Tran,et al.  Convergence to equilibrium of a linearized quantum Boltzmann equation for bosons at very low temperature , 2014, 1412.0978.

[94]  T. Nikuni,et al.  Bose-Condensed Gases at Finite Temperatures , 2009 .

[95]  David F. Anderson,et al.  Product-Form Stationary Distributions for Deficiency Zero Chemical Reaction Networks , 2008, Bulletin of mathematical biology.

[96]  Gerard Ben Arous,et al.  A Central Limit Theorem in Many-Body Quantum Dynamics , 2011, 1111.6999.

[97]  B. Schlein,et al.  Quantum Many-Body Fluctuations Around Nonlinear Schrödinger Dynamics , 2015, 1509.03837.

[98]  P. Zoller,et al.  QUANTUM KINETIC THEORY. II. SIMULATION OF THE QUANTUM BOLTZMANN MASTER EQUATION , 1997, quant-ph/9701008.

[99]  C. Gardiner,et al.  The Quantum World of Ultra-Cold Atoms and Light Book II: The Physics of Quantum-Optical Devices , 2015 .

[100]  A. Nouri,et al.  Bose Condensates in Interaction with Excitations: A Two-Component Space-Dependent Model Close to Equilibrium , 2013, Journal of Statistical Physics.