Extreme multistability in a chemical model system.

Coupled systems can exhibit an unusual kind of multistability, namely, the coexistence of infinitely many attractors for a given set of parameters. This extreme multistability is demonstrated to occur in coupled chemical model systems with various types of coupling. We show that the appearance of extreme multistability is associated with the emergence of a conserved quantity in the long-term limit. This conserved quantity leads to a "slicing" of the state space into manifolds corresponding to the value of the conserved quantity. The state space "slices" develop as t→∞ and there exists at least one attractor in each of them. We discuss the dependence of extreme multistability on the coupling and on the mismatch of parameters of the coupled systems.

[1]  Cristina Masoller,et al.  STABILITY AND DYNAMICAL PROPERTIES OF THE COEXISTING ATTRACTORS OF AN EXTERNAL-CAVITY SEMICONDUCTOR LASER , 1998 .

[2]  E Schöll,et al.  Delayed feedback control of chaos: bifurcation analysis. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  R. Parentani,et al.  Hawking Radiation from Acoustic Black Holes, Short Distance and Back-Reaction Effects , 2006, gr-qc/0601079.

[4]  S. Scott,et al.  On the creation, growth and extinction of oscillatory solutions for a simple pooled chemical reaction scheme , 1987 .

[5]  Eckehard Schöll,et al.  Self-organized symmetry-breaking current filamentation and multistability in Corbino disks , 2000 .

[6]  Irving R. Epstein,et al.  Systematic design of chemical oscillators. Part 13. Complex periodic and aperiodic oscillation in the chlorite-thiosulfate reaction , 1982 .

[7]  Mw Hirsch,et al.  Chaos In Dynamical Systems , 2016 .

[8]  B. M. Fulk MATH , 1992 .

[9]  K. Showalter,et al.  Controlling chemical chaos , 1991 .

[10]  Sean Becketti,et al.  In at the Creation , 2005 .

[11]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[12]  Kunihiko Kaneko,et al.  Theory and Applications of Coupled Map Lattices , 1993 .

[13]  Carlo Piccardi Parameter Estimation for Systems with Peak-to-Peak Dynamics , 2008, Int. J. Bifurc. Chaos.

[14]  C. Masoller Noise-induced resonance in delayed feedback systems. , 2002, Physical review letters.

[15]  H. Engel Chemical Chaos , 1995 .

[16]  Irving R. Epstein,et al.  Systematic design of chemical oscillators. Part 13. Complex periodic and aperiodic oscillation in the chlorite-thiosulfate reaction , 1982 .

[17]  A. Pikovsky,et al.  Resolving clusters in chaotic ensembles of globally coupled identical oscillators. , 2001, Physical review letters.

[18]  Ulrike Feudel,et al.  Complex Dynamics in multistable Systems , 2008, Int. J. Bifurc. Chaos.

[19]  Andrew G. Glen,et al.  APPL , 2001 .

[20]  W. Marsden I and J , 2012 .

[21]  V. Astakhov,et al.  Multistability formation and synchronization loss in coupled Hénon maps: two sides of the single bifurcational mechanism. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Eckehard Schöll,et al.  Multistability of the current‐voltage characteristics in doped GaAs‐AlAs superlattices , 1994 .

[23]  J. Milnor On the concept of attractor , 1985 .

[24]  John Guckenheimer,et al.  A Geometric Model for Mixed-Mode Oscillations in a Chemical System , 2011, SIAM J. Appl. Dyn. Syst..

[25]  F. Arecchi,et al.  Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a Q-switched gas laser , 1982 .

[26]  Franz J. Weissing,et al.  Fundamental Unpredictability in Multispecies Competition , 2001, The American Naturalist.

[27]  K Showalter,et al.  Uncertain destination dynamics. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[29]  István Z. Kiss,et al.  Controlling Chaos with Artificial Neural Network: Numerical Studies and Experiments , 2000 .

[30]  A. Credi,et al.  Molecular Devices and Machines , 2007, New Frontiers in Nanochemistry.

[31]  D. Jordan,et al.  Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers , 1979 .

[32]  Foss,et al.  Multistability and delayed recurrent loops. , 1996, Physical review letters.

[33]  J. Hervagault,et al.  Multiple steady states and dissipative structures in a circular and linear array of three cells : numerical and experimental approaches , 1991 .

[34]  C. Grebogi,et al.  Multistability and the control of complexity. , 1997, Chaos.

[35]  Alexander N. Pisarchik,et al.  Controlling Multistability by Small Periodic Perturbation , 2008, Int. J. Bifurc. Chaos.

[36]  Tingwen Huang,et al.  Impulsive synchronization and parameter mismatch of the three-variable autocatalator model , 2007 .

[37]  Stephen K. Scott,et al.  Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Isolas and other forms of multistability , 1983 .

[38]  D. W. Jordan,et al.  Nonlinear ordinary differential equations : an introduction to dynamical systems , 1999 .

[39]  István Nagypál,et al.  Fluctuations and stirring rate effects in the chlorite-thiosulfate reaction , 1986 .

[40]  Kenneth Showalter,et al.  Uncertain dynamics in nonlinear chemical reactions , 2003 .

[41]  T. Morrison,et al.  Dynamical Systems , 2021, Nature.

[42]  Grebogi,et al.  Map with more than 100 coexisting low-period periodic attractors. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[43]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[44]  K. Showalter,et al.  Period Doubling and Chaos in a Three-Variable Autocatalator , 1990 .

[45]  Valery Petrov,et al.  Mixed‐mode oscillations in chemical systems , 1992 .

[46]  Helwig Löffelmann,et al.  GEOMETRY OF MIXED-MODE OSCILLATIONS IN THE 3-D AUTOCATALATOR , 1998 .

[47]  B. Krauskopf Semiconductor lasers as dynamical systems , 2006 .

[48]  Kenneth Showalter,et al.  Bistability, mushrooms, and isolas , 1984 .

[49]  Peter Gray,et al.  Chemical Oscillations and Instabilities: Non-Linear Chemical Kinetics , 1990 .

[50]  Limit-cycle behaviour in a model chemical reaction: the cubic autocatalator , 1990 .

[51]  John Guckenheimer,et al.  Singular Hopf Bifurcation in Systems with Two Slow Variables , 2008, SIAM J. Appl. Dyn. Syst..