CheKiPEUQ Intro 1: Bayesian Parameter Estimation Considering Uncertainty or Error from both Experiments and Theory **

A common goal is extraction of physico‐chemical parameter values such as pre‐exponentials and activation energies from experiment. Ever increasing knowledge from experiments and computations is enabling semi‐quantitative prior predictions of such values. When prior knowledge of physically realistic ranges is available, a method named Bayesian parameter estimation (BPE) enables more physically realistic parameter estimation relative to unsophisticated fitting by seeking the most probable value when considering together the uncertainties from prior knowledge, experimental data, and approximations in the model. An impediment to widespread use of BPE is a lack of understanding, training, and user‐friendly software. Along with this invited publication, a general software package for BPE is being released that is user‐friendly and that does not require understanding of the math behind the methodology. Two previously unpublished catalysis science examples are provided along with considerations and guidelines for successful application of BPE. Following this work, BPE can become more widespread to enable extraction of physically meaningful parameter values.

[1]  H. Freund,et al.  Role of low-coordinated surface sites in olefin hydrogenation: a molecular beam study on Pd nanoparticles and Pd(111). , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[2]  A. Savara Simulation and fitting of complex reaction network TPR: The key is the objective function , 2016 .

[3]  Daniel Wallach,et al.  Using a Bayesian approach to parameter estimation; comparison of the GLUE and MCMC methods , 2002 .

[4]  U. Schwertmann,et al.  Iron Oxides in the Laboratary , 2000 .

[5]  John K. Kruschke,et al.  Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan , 2014 .

[6]  M. Hove,et al.  Theoretical study of the termination of the Fe3O4 (111) surface , 1999 .

[7]  G. Magnacca,et al.  Surface properties of catalytic aluminas modified by alkaline-earth metal cations: A microcalorimetric and IR-spectroscopic study , 1999 .

[8]  Ye Xu,et al.  Oxygen vacancy-assisted coupling and enolization of acetaldehyde on CeO2(111). , 2012, Journal of the American Chemical Society.

[9]  A. Danon,et al.  TPD of nitric acid from BaNa-Y: evidence that a nanoscale environment can alter a reaction mechanism. , 2009, Physical chemistry chemical physics : PCCP.

[10]  Jonathan E. Sutton,et al.  Effect of errors in linear scaling relations and Brønsted–Evans–Polanyi relations on activity and selectivity maps , 2016 .

[11]  M. Scheffler,et al.  Beyond Scaling Relations for the Description of Catalytic Materials , 2019, ACS Catalysis.

[12]  J. Kruschke Chapter 8 – JAGS , 2015 .

[13]  U. Schwertmann,et al.  Iron Oxides in the Laboratory: Preparation and Characterization , 1991 .

[14]  W. Ranke,et al.  Structure and reactivity of iron oxide surfaces , 1999 .

[15]  Philippe Sautet,et al.  Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers. , 2015, Nature chemistry.

[16]  David A. Sheen,et al.  Combustion kinetic modeling using multispecies time histories in shock-tube oxidation of heptane , 2011 .

[17]  David J. Lunn,et al.  The BUGS Book: A Practical Introduction to Bayesian Analysis , 2013 .

[18]  S. Klippenstein,et al.  Ab Initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species. , 2017, The journal of physical chemistry. A.

[19]  David M. Lane,et al.  Online Statistics Education: A Multimedia Course of Study , 2003 .

[20]  Osman G. Mamun,et al.  Prediction of Adsorption Energies for Chemical Species on Metal Catalyst Surfaces Using Machine Learning , 2018, The Journal of Physical Chemistry C.

[21]  M. Dupuis,et al.  Ethylene and Water Co-Adsorption on Ag/SSZ-13 Zeolites: A Theoretical Study , 2020 .

[22]  Ye Xu,et al.  Simulated Temperature Programmed Desorption of Acetaldehyde on CeO2(111): Evidence for the Role of Oxygen Vacancy and Hydrogen Transfer , 2017, Topics in Catalysis.

[23]  Zachary W. Ulissi,et al.  To address surface reaction network complexity using scaling relations machine learning and DFT calculations , 2017, Nature Communications.

[24]  Sebastian Matera,et al.  Error propagation in first-principles kinetic Monte Carlo simulation , 2017 .

[25]  Markus Reiher,et al.  Exploration of Reaction Pathways and Chemical Transformation Networks. , 2018, The journal of physical chemistry. A.

[26]  Christopher R. Myers,et al.  Universally Sloppy Parameter Sensitivities in Systems Biology Models , 2007, PLoS Comput. Biol..

[27]  Ying Zhang,et al.  A strategy to apply machine learning to small datasets in materials science , 2018, npj Computational Materials.

[28]  Youssef M. Marzouk,et al.  Bayesian inference of chemical kinetic models from proposed reactions , 2015 .

[29]  H. Haario,et al.  Rapid estimation of chemical kinetics by implicit calibration. I , 2001 .

[30]  A. Villa,et al.  Microkinetic Modeling of Benzyl Alcohol Oxidation on Carbon‐Supported Palladium Nanoparticles , 2016 .

[31]  J. Nørskov,et al.  Universal transition state scaling relations for (de)hydrogenation over transition metals. , 2011, Physical chemistry chemical physics : PCCP.

[32]  Jonathan E. Sutton,et al.  Below-Room-Temperature C-H Bond Breaking on an Inexpensive Metal Oxide: Methanol to Formaldehyde on CeO2(111). , 2017, The journal of physical chemistry letters.

[33]  Markus Reiher,et al.  Error Assessment of Computational Models in Chemistry. , 2017, Chimia.

[34]  Xianfeng Ma,et al.  Orbitalwise Coordination Number for Predicting Adsorption Properties of Metal Nanocatalysts. , 2017, Physical review letters.

[35]  Barbieri,et al.  Surface structure determination of an oxide film grown on a foreign substrate: Fe3O4 multilayer on Pt(111) identified by low energy electron diffraction. , 1993, Physical review letters.

[36]  A. Savara Vibrational spectra of CO adsorbed on oxide thin films: A tool to probe the surface defects and phase changes of oxide thin films , 2014 .

[37]  A. Bhan,et al.  Mechanistic Origins of Unselective Oxidation Products in the Conversion of Propylene to Acrolein on Bi2Mo3O12 , 2016 .

[38]  Sophia Lefantzi,et al.  DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. , 2011 .

[39]  V. Zhdanov,et al.  Arrhenius parameters for rate processes on solid surfaces , 1991 .

[40]  Michael Smithson,et al.  Doing Bayesian Data Analysis: A Tutorial with R and BUGS, J.J. Kruschke. Academic Press (2011), 653, $89.95Reviewed by Michael Smithson, ISBN: 9780123814852 , 2011 .

[41]  C. Maravelias,et al.  Sequential-Optimization-Based Framework for Robust Modeling and Design of Heterogeneous Catalytic Systems , 2017 .

[42]  Jungkuk Lee,et al.  Characterizing Adsorption Sites on Ag/SSZ-13 Zeolites: Experimental Observations and Bayesian Inference , 2020 .

[43]  A. Savara,et al.  Surface Reactions and Catalytic Activities for Small Alcohols over LaMnO3(100) and La0.7Sr0.3MnO3(100): Dehydrogenation, Dehydration, and Oxidation , 2020 .

[44]  G. Thornton,et al.  BIPHASE ORDERING ON FE3O4(111) , 1997 .

[45]  P. Sautet,et al.  Molecular adsorption at Pt(111). How accurate are DFT functionals? , 2015, Physical chemistry chemical physics : PCCP.

[46]  Zachary W. Ulissi,et al.  Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution , 2018, Nature Catalysis.

[47]  Czech Republic,et al.  Learning physical descriptors for materials science by compressed sensing , 2016, 1612.04285.

[48]  P. B. Changala,et al.  Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide. , 2017, The journal of physical chemistry. A.

[49]  Jonathan E. Sutton,et al.  Molecular Origin of the Selectivity Differences between Palladium and Gold–Palladium in Benzyl Alcohol Oxidation: Different Oxygen Adsorption Properties , 2017 .

[50]  A. Bhan,et al.  Pathways, mechanisms, and kinetics: a strategy to examine byproduct selectivity in partial oxidation catalytic transformations on reducible oxides , 2019, Reaction Chemistry & Engineering.

[51]  James V. Stone Bayes' Rule: A Tutorial Introduction to Bayesian Analysis , 2013 .

[52]  J. Korecki,et al.  CO adsorption on Fe3O4(1 1 1) with regular and biphase terminations , 2020 .

[53]  H. Freund,et al.  Defects and inhomogeneities in Fe3O4(111) thin film growth on Pt(111) , 2012 .

[54]  Will Usher,et al.  SALib: An open-source Python library for Sensitivity Analysis , 2017, J. Open Source Softw..

[55]  Zachary W. Ulissi,et al.  Effect of multiscale model uncertainty on identification of optimal catalyst properties , 2011 .

[56]  Markos A Katsoulakis,et al.  Effects of correlated parameters and uncertainty in electronic-structure-based chemical kinetic modelling. , 2016, Nature chemistry.

[57]  J. Nørskov,et al.  CatApp: a web application for surface chemistry and heterogeneous catalysis. , 2012, Angewandte Chemie.

[58]  A. Savara,et al.  Temperature dependence of the 2-butene hydrogenation over supported Pd nanoparticles and Pd(111) , 2013 .

[59]  William F. Schneider,et al.  Progress in Accurate Chemical Kinetic Modeling, Simulations, and Parameter Estimation for Heterogeneous Catalysis , 2019, ACS Catalysis.

[60]  R. Masel Principles of Adsorption and Reaction on Solid Surfaces , 1996 .

[61]  H. Freund,et al.  The surface structure of Fe3O4(111) films as studied by CO adsorption , 2004 .

[62]  Branko Ruscic,et al.  Uncertainty quantification in thermochemistry, benchmarking electronic structure computations, and Active Thermochemical Tables , 2014 .

[63]  John Salvatier,et al.  Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..

[64]  M. Scheffler,et al.  Simultaneous learning of several materials properties from incomplete databases with multi-task SISSO , 2019, Journal of Physics: Materials.

[65]  Andrew J. Medford,et al.  Extracting Knowledge from Data through Catalysis Informatics , 2018, ACS Catalysis.

[66]  L. Schmidt,et al.  The coverage dependence of the pre-exponential factor for desorption , 1988 .

[67]  W. Weiss Structure and composition of thin epitaxial iron oxide films grown onto Pt(111) , 1997 .

[68]  C. Maravelias,et al.  Reaction Mechanism of Vapor-Phase Formic Acid Decomposition over Platinum Catalysts: DFT, Reaction Kinetics Experiments, and Microkinetic Modeling , 2020 .

[69]  E. Weitz,et al.  Kinetics of NO + H+ + NO3− → NO2 + HNO2 on BaNa−Y: Evidence for a Diffusion-Limited A + B → 0 Reaction on a Surface† , 2010 .

[70]  A. Villa,et al.  Benzyl Alcohol Oxidation on Carbon‐Supported Pd Nanoparticles: Elucidating the Reaction Mechanism , 2014 .

[71]  Thomas Bligaard,et al.  mBEEF: an accurate semi-local Bayesian error estimation density functional. , 2014, The Journal of chemical physics.

[72]  Andrew B. Lawson,et al.  Bayesian Biostatistics: Lesaffre/Bayesian Biostatistics , 2012 .

[73]  William Finnigan,et al.  Engineering a Seven Enzyme Biotransformation using Mathematical Modelling and Characterized Enzyme Parts , 2019, ChemCatChem.

[74]  A. Bhan,et al.  A kinetic model for propylene oxidation on a mixed metal oxide catalyst , 2018 .

[75]  A. Savara Standard States for Adsorption on Solid Surfaces: 2D Gases, Surface Liquids, and Langmuir Adsorbates , 2013 .

[76]  David A. Sheen,et al.  The method of uncertainty quantification and minimization using polynomial chaos expansions , 2011 .

[77]  Gabriel Terejanu,et al.  Uncertainty Quantification Framework Applied to the Water–Gas Shift Reaction over Pt-Based Catalysts , 2016 .

[78]  A. Savara Microkinetic simulation and fitting of the temperature programmed reaction of methanol on CeO2(111): H2 and H2O + V production , 2020, Reaction Kinetics, Mechanisms and Catalysis.

[79]  Mark K Transtrum,et al.  Why are nonlinear fits to data so challenging? , 2009, Physical review letters.

[80]  E. Weitz,et al.  Catalytic reduction of NH4NO3 by NO: Effects of solid acids and implications for low temperature DeNOx processes , 2008 .

[81]  J. Vybíral,et al.  Big data of materials science: critical role of the descriptor. , 2014, Physical review letters.

[82]  A. M. Efstathiou,et al.  CO adsorption on transition metal clusters: trends from density functional theory , 2008 .

[83]  J. Paier,et al.  Surface Termination of Fe3O4(111) Films Studied by CO Adsorption Revisited. , 2017, The journal of physical chemistry. B.

[84]  E. Weitz,et al.  Adsorption Entropies and Enthalpies and Their Implications for Adsorbate Dynamics , 2009 .

[85]  Andreas Heyden,et al.  Identifying Active Sites of the Water-Gas Shift Reaction over Titania Supported Platinum Catalysts under Uncertainty , 2017, 1710.03672.

[86]  Jonathan E. Sutton,et al.  SQERT-T: alleviating kinetic Monte Carlo (KMC)-stiffness in transient KMC simulations , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[87]  Giannis Mpourmpakis,et al.  Identification of descriptors for the CO interaction with metal nanoparticles. , 2010, Nano letters.

[88]  Venkat Venkatasubramanian,et al.  A hybrid genetic algorithm for efficient parameter estimation of large kinetic models , 2004, Comput. Chem. Eng..