Prescription of Gauss curvature using optimal mass transport

In this paper we give a new proof of a theorem by Alexandrov on the Gauss curvature prescription of Euclidean convex sets. This proof is based on the duality theory of convex sets and on optimal mass transport. A noteworthy property of this proof is that it does not rely neither on the theory of convex polyhedra nor on P.D.E. methods (which appeared in all the previous proofs of this result).

[1]  Sheldon M. Ross Normal Random Variables , 2017 .

[2]  R. McCann Polar factorization of maps on Riemannian manifolds , 2001 .

[3]  Pengfei Guan,et al.  The Existence of Convex Body with Prescribed Curvature Measures , 2009 .

[4]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[5]  M. Knott,et al.  Note on the optimal transportation of distributions , 1987 .

[6]  L. Kantorovich On the Translocation of Masses , 2006 .

[7]  Vladimir Oliker,et al.  Embedding $S^n$ into $R^{n+1}$ with given integral Gauss curvature and optimal mass transport on $S^n$ , 2007 .

[8]  B. O'neill Semi-Riemannian Geometry With Applications to Relativity , 1983 .

[9]  A. V. Pogorelov Extrinsic geometry of convex surfaces , 1973 .

[10]  Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes Application to the Minkowski problem in the Minkowski space , 2008, 0804.1053.

[11]  J. Ratcliffe Foundations of Hyperbolic Manifolds , 2019, Graduate Texts in Mathematics.

[12]  Ilya J. Bakelman,et al.  Convex Analysis and Nonlinear Geometric Elliptic Equations , 1994 .

[13]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[14]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[15]  F. Labourie,et al.  Surfaces convexes fuchsiennes dans les espaces lorentziens à courbure constante , 2000 .

[16]  L. Rüschendorf On c-optimal random variables , 1996 .

[17]  J. Bertrand Prescription of Gauss curvature on compact hyperbolic orbifolds , 2013 .

[18]  C. Villani Topics in Optimal Transportation , 2003 .

[19]  R. McCann Existence and uniqueness of monotone measure-preserving maps , 1995 .

[20]  Bounds for hyperspheres of prescribed Gaussian curvature , 1990 .