Heterogeneous Thin Films: Combining Homogenization and Dimension Reduction with Directors

We analyze the asymptotic behavior of a multiscale problem given by a sequence of integral functionals subject to differential constraints conveyed by a constant-rank operator with two characteristic length scales, namely, the film thickness and the period of oscillating microstructures, by means of $\Gamma$-convergence. On a technical level, this requires a subtle merging of homogenization tools, such as multiscale convergence methods, with dimension reduction techniques for functionals subject to differential constraints. One observes that the results depend critically on the relative magnitude between the two scales. Interestingly, this even regards the fundamental question of locality of the limit model and, in particular, leads to new findings also in the gradient case.

[1]  Jean-François Babadjian,et al.  Multiscale nonconvex relaxation and application to thin films , 2006, Asymptot. Anal..

[2]  Bernard Dacorogna,et al.  Weak Continuity and Weak Lower Semicontinuity of Non-Linear Functionals , 1982 .

[3]  Y. Shu,et al.  Heterogeneous Thin Films of Martensitic Materials , 2000 .

[4]  3D–2D analysis of a thin film with periodic microstructure , 2006, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[5]  G. Allaire Homogenization and two-scale convergence , 1992 .

[6]  Irene Fonseca,et al.  A -Quasiconvexity. lower semicontinuity, and young measures , 1999 .

[7]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[8]  Thin-film limits of functionals on A-free vector fields , 2011, 1105.3848.

[9]  I. Fonseca,et al.  Nonlocal character of the reduced theory of thin films with higher order perturbations , 2010 .

[10]  Grégoire Allaire,et al.  Multiscale convergence and reiterated homogenisation , 1996, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[11]  Irene Fonseca,et al.  A-QUASICONVEXITY: RELAXATION AND HOMOGENIZATION , 2000 .

[12]  G. Nguetseng A general convergence result for a functional related to the theory of homogenization , 1989 .

[13]  I. Fonseca,et al.  3D-2D Asymptotic Analysis for Inhomogeneous Thin Films , 2000 .

[14]  I. Fonseca,et al.  Multiple integrals under differential constraints: Two-scale convergence and homogenization , 2010 .

[15]  François Murat Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant , 1981 .

[16]  Annie Raoult,et al.  Variational Convergence for Nonlinear Shell Models with Directors and Related Semicontinuity and Relaxation Results , 2000 .

[17]  I. Fonseca,et al.  Equi-integrability results for 3D-2D dimension reduction problems , 2002 .

[18]  Luc Tartar,et al.  Compensated compactness and applications to partial differential equations , 1979 .

[19]  F. Murat,et al.  Compacité par compensation , 1978 .

[20]  Multiscale Relaxation of Convex Functionals , 2003 .

[21]  I. Fonseca,et al.  Thin elastic films : The impact of higher order perturbations , 2006 .

[22]  A note on equi-integrability in dimension reduction problems , 2007 .

[23]  Andrea Braides Γ-convergence for beginners , 2002 .

[24]  Stefan Müller,et al.  Homogenization of nonconvex integral functionals and cellular elastic materials , 1987 .