Minimum Separator Reconfiguration

We study the problem of reconfiguring one minimum $s$-$t$-separator $A$ into another minimum $s$-$t$-separator $B$ in some $n$-vertex graph $G$ containing two non-adjacent vertices $s$ and $t$. We consider several variants of the problem as we focus on both the token sliding and token jumping models. Our first contribution is a polynomial-time algorithm that computes (if one exists) a minimum-length sequence of slides transforming $A$ into $B$. We additionally establish that the existence of a sequence of jumps (which need not be of minimum length) can be decided in polynomial time (by an algorithm that also outputs a witnessing sequence when one exists). In contrast, and somewhat surprisingly, we show that deciding if a sequence of at most $\ell$ jumps can transform $A$ into $B$ is an $\textsf{NP}$-complete problem. To complement this negative result, we investigate the parameterized complexity of what we believe to be the two most natural parameterized counterparts of the latter problem; in particular, we study the problem of computing a minimum-length sequence of jumps when parameterized by the size $k$ of the minimum \stseps and when parameterized by the number of jumps $\ell$. For the first parameterization, we show that the problem is fixed-parameter tractable, but does not admit a polynomial kernel unless $\textsf{NP} \subseteq \textsf{coNP/poly}$. We complete the picture by designing a kernel with $\mathcal{O}(\ell^2)$ vertices and edges for the length $\ell$ of the sequence as a parameter.

[1]  A. E. Mouawad,et al.  On finding short reconfiguration sequences between independent sets , 2022, ISAAC.

[2]  Carl Feghali,et al.  Strengthening a theorem of Meyniel , 2022, SIAM J. Discret. Math..

[3]  Daniel W. Cranston,et al.  In most 6-regular toroidal graphs all 5-colorings are Kempe equivalent , 2021, European journal of combinatorics (Print).

[4]  Vinicius F. dos Santos,et al.  Some results on Vertex Separator Reconfiguration , 2020, ArXiv.

[5]  Takehiro Ito,et al.  Shortest Reconfiguration of Perfect Matchings via Alternating Cycles , 2019, ESA.

[6]  Amer E. Mouawad,et al.  The Complexity of Independent Set Reconfiguration on Bipartite Graphs , 2017, SODA.

[7]  István Miklós,et al.  Sampling and counting genome rearrangement scenarios , 2015, BMC Bioinformatics.

[8]  Naomi Nishimura,et al.  Vertex Cover Reconfiguration and Beyond , 2014, ISAAC.

[9]  David R. Wood,et al.  Parameters Tied to Treewidth , 2013, J. Graph Theory.

[10]  Naomi Nishimura,et al.  On the Parameterized Complexity of Reconfiguration Problems , 2013, Algorithmica.

[11]  Andrew Drucker,et al.  New Limits to Classical and Quantum Instance Compression , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[12]  Stefan Kratsch,et al.  Kernelization Lower Bounds by Cross-Composition , 2012, SIAM J. Discret. Math..

[13]  Ümit V. Çatalyürek,et al.  Partitioning Hypergraphs in Scientific Computing Applications through Vertex Separators on Graphs , 2012, SIAM J. Sci. Comput..

[14]  Barry O'Sullivan,et al.  Finding small separators in linear time via treewidth reduction , 2011, TALG.

[15]  Dieter van Melkebeek,et al.  Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses , 2010, STOC '10.

[16]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[17]  Cem Evrendilek,et al.  Vertex Separators for Partitioning a Graph , 2008, Sensors.

[18]  Lance Fortnow,et al.  Infeasibility of instance compression and succinct PCPs for NP , 2007, J. Comput. Syst. Sci..

[19]  Takehiro Ito,et al.  Approximability of partitioning graphs with supply and demand , 2006, J. Discrete Algorithms.

[20]  Bin Fu,et al.  Sublinear time width-bounded separators and their application to the protein side-chain packing problem , 2006, J. Comb. Optim..

[21]  Günter Rote,et al.  Blowing Up Polygonal Linkages , 2003 .

[22]  H. Bodlaender A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[23]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[24]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[25]  Charles E. Leiserson,et al.  Area-efficient graph layouts , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[26]  Margaret-Ellen Messinger,et al.  Reconfiguration Graphs for Dominating Sets , 2021, Association for Women in Mathematics Series.

[27]  Eric V. Denardo,et al.  Flows in Networks , 2011 .

[28]  B. A. Reed,et al.  Algorithmic Aspects of Tree Width , 2003 .

[29]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[30]  K. Menger Zur allgemeinen Kurventheorie , 1927 .