Minimum Separator Reconfiguration
暂无分享,去创建一个
Tom C. van der Zanden | Guilherme C. M. Gomes | A. E. Mouawad | V. F. D. Santos | Reem Mahmoud | Yoshio Okamoto | Clément Legrand-Duchesne | Cl'ement Legrand-Duchesne
[1] A. E. Mouawad,et al. On finding short reconfiguration sequences between independent sets , 2022, ISAAC.
[2] Carl Feghali,et al. Strengthening a theorem of Meyniel , 2022, SIAM J. Discret. Math..
[3] Daniel W. Cranston,et al. In most 6-regular toroidal graphs all 5-colorings are Kempe equivalent , 2021, European journal of combinatorics (Print).
[4] Vinicius F. dos Santos,et al. Some results on Vertex Separator Reconfiguration , 2020, ArXiv.
[5] Takehiro Ito,et al. Shortest Reconfiguration of Perfect Matchings via Alternating Cycles , 2019, ESA.
[6] Amer E. Mouawad,et al. The Complexity of Independent Set Reconfiguration on Bipartite Graphs , 2017, SODA.
[7] István Miklós,et al. Sampling and counting genome rearrangement scenarios , 2015, BMC Bioinformatics.
[8] Naomi Nishimura,et al. Vertex Cover Reconfiguration and Beyond , 2014, ISAAC.
[9] David R. Wood,et al. Parameters Tied to Treewidth , 2013, J. Graph Theory.
[10] Naomi Nishimura,et al. On the Parameterized Complexity of Reconfiguration Problems , 2013, Algorithmica.
[11] Andrew Drucker,et al. New Limits to Classical and Quantum Instance Compression , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.
[12] Stefan Kratsch,et al. Kernelization Lower Bounds by Cross-Composition , 2012, SIAM J. Discret. Math..
[13] Ümit V. Çatalyürek,et al. Partitioning Hypergraphs in Scientific Computing Applications through Vertex Separators on Graphs , 2012, SIAM J. Sci. Comput..
[14] Barry O'Sullivan,et al. Finding small separators in linear time via treewidth reduction , 2011, TALG.
[15] Dieter van Melkebeek,et al. Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses , 2010, STOC '10.
[16] Michael R. Fellows,et al. On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..
[17] Cem Evrendilek,et al. Vertex Separators for Partitioning a Graph , 2008, Sensors.
[18] Lance Fortnow,et al. Infeasibility of instance compression and succinct PCPs for NP , 2007, J. Comput. Syst. Sci..
[19] Takehiro Ito,et al. Approximability of partitioning graphs with supply and demand , 2006, J. Discrete Algorithms.
[20] Bin Fu,et al. Sublinear time width-bounded separators and their application to the protein side-chain packing problem , 2006, J. Comb. Optim..
[21] Günter Rote,et al. Blowing Up Polygonal Linkages , 2003 .
[22] H. Bodlaender. A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..
[23] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..
[24] Paul D. Seymour,et al. Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.
[25] Charles E. Leiserson,et al. Area-efficient graph layouts , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).
[26] Margaret-Ellen Messinger,et al. Reconfiguration Graphs for Dominating Sets , 2021, Association for Women in Mathematics Series.
[27] Eric V. Denardo,et al. Flows in Networks , 2011 .
[28] B. A. Reed,et al. Algorithmic Aspects of Tree Width , 2003 .
[29] Michael R. Fellows,et al. Parameterized Complexity , 1998 .
[30] K. Menger. Zur allgemeinen Kurventheorie , 1927 .