Discrete Carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations☆

We derive a semi-discrete two-dimensional elliptic global Carleman estimate, in which the usual large parameter is connected to the one-dimensional discretization step-size. The discretizations we address are some families of quasi-uniform meshes. As a consequence of the Carleman estimate, we derive a partial spectral inequality of the form of that proved by G.~Lebeau and L.~Robbiano, in the case of a discrete elliptic operator in one dimension. Here, this inequality concerns the lower part of the discrete spectrum. The range of eigenvalues/eigenfunctions we treat is however quasi-optimal and represents a constant portion of the discrete spectrum. For the associated parabolic problem, we then obtain a uniform null controllability result for this lower part of the spectrum. Moreover, with the control function that we construct, the $L^2$ norm of the final state converges to zero super-algebraically as the step-size of the discretization goes to zero. An observability-like estimate is then deduced.

[1]  R. Glowinski,et al.  Exact and approximate controllability for distributed parameter systems , 1995, Acta Numerica.

[2]  Jérôme Le Rousseau,et al.  On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations , 2012 .

[3]  Enrique Zuazua,et al.  Null‐Controllability of a System of Linear Thermoelasticity , 1998 .

[4]  Oleg Yu. Imanuvilov,et al.  Controllability of Evolution equations , 1996 .

[5]  Emmanuel Trélat,et al.  Uniform controllability of semidiscrete approximations of parabolic control systems , 2006, Syst. Control. Lett..

[6]  F. Boyer,et al.  On the approximation of the null-controllability problem for parabolic equations , 2009 .

[7]  Luc Miller,et al.  On the Controllability of Anomalous Diffusions Generated by the Fractional Laplacian , 2006, Math. Control. Signals Syst..

[8]  A. Osses,et al.  Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients , 2002 .

[9]  G. Lebeau,et al.  Contróle Exact De Léquation De La Chaleur , 1995 .

[10]  Chuang Zheng Controllability of the time discrete heat equation , 2008, Asymptot. Anal..

[11]  Franck Boyer,et al.  Uniform controllability properties for space/time-discretized parabolic equations , 2011, Numerische Mathematik.

[12]  E. Zuazua Control and numerical approximation of the wave and heat equations , 2006 .

[13]  Franck Boyer,et al.  Discrete Carleman Estimates for Elliptic Operators in Arbitrary Dimension and Applications , 2010, SIAM J. Control. Optim..

[14]  Zhenhai Liu,et al.  Exact controllability of the superlinear heat equation , 2008 .

[15]  Andreas Axelsson,et al.  On a quadratic estimate related to the Kato conjecture and boundary value problems , 2008, 0810.3071.

[16]  Jérôme Le Rousseau Représentation Microlocale de Solutions de Systèmes Hyperboliques, Application à l'Imagerie, et Contributions au Contrôle et aux Problèmes Inverses pour des Equations Paraboliques , 2007 .

[17]  J. L. S. Luk Mémoire d'habilitation à diriger des recherches , 2000 .

[18]  Enrique Zuazua,et al.  Some new results related to the null controllability of the $1-d$ heat equation , 1998 .

[19]  Michael V. Klibanov,et al.  A computational quasi-reversiblility method for Cauchy problems for Laplace's equation , 1991 .

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  Enrique Zuazua,et al.  Null and approximate controllability for weakly blowing up semilinear heat equations , 2000 .