Section 4. Iron Transport by the Shelf-to-Basin Shuttle

My PhD supervisor, Mike Atherton, was a metamorphic geochemist who ran a geochemical training ‘boot camp.’ There was an initiation rite at the start of this programme with neophyte geochemists being tested on their pipetting skills. The exercise seemed deceptively simple: pipette successive one

[1]  Peter Berg,et al.  Dynamic Modeling of Early Diagenesis and Nutrient Cycling. A Case Study in an Artic Marine Sediment , 2003 .

[2]  A. Anbar,et al.  Isotopic evidence for Fe cycling and repartitioning in ancient oxygen-deficient settings: Examples from black shales of the mid-to-late Devonian Appalachian basin , 2010 .

[3]  C. Heip,et al.  Reactive iron in Black Sea Sediments: implications for iron cycling , 2001 .

[4]  B. Boudreau On the Equivalence of Nonlocal and Radial-Diffusion Models for Porewater Irrigation , 1984 .

[5]  K. Johnson,et al.  A time series of benthic flux measurements from Monterey Bay, CA , 2003 .

[6]  K. Johnson,et al.  Phosphorus regeneration in continental margin sediments , 1997 .

[7]  I. Fung,et al.  Wintertime phytoplankton bloom in the subarctic Pacific supported by continental margin iron , 2006 .

[8]  J. Macquaker,et al.  Iron minerals in marine sediments record chemical environments , 2011 .

[9]  T. Anderson,et al.  Reactive iron enrichment in sediments deposited beneath euxinic bottom waters: constraints on supply by shelf recycling , 2005, Geological Society, London, Special Publications.

[10]  R. Raiswell,et al.  The low-temperature geochemical cycle of iron: From continental fluxes to marine sediment deposition , 2002 .

[11]  D. Canfield,et al.  A model for iron deposition to euxinic Black Sea sediments , 1996 .

[12]  T. Lyons,et al.  A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins , 2006 .

[13]  R. Aller,et al.  Diagenesis of Fe and S in Amazon inner shelf muds: apparent dominance of Fe reduction and implications for the genesis of ironstones , 1986 .

[14]  R. Gordon,et al.  Northeast Pacific iron distributions in relation to phytoplankton productivity , 1988 .

[15]  D. Canfield Reactive iron in marine sediments. , 1989, Geochimica et cosmochimica acta.

[16]  D. Canfield,et al.  Rates of reaction between silicate iron and dissolved sulfide in Peru Margin sediments , 1996 .

[17]  Bo G. Gustafsson,et al.  Sedimentary phosphorus dynamics and the evolution of bottom‐water hypoxia: A coupled benthic–pelagic model of a coastal system , 2011 .

[18]  W. K. Johnson,et al.  Iron supply to the western subarctic Pacific: Importance of iron export from the Sea of Okhotsk , 2007 .

[19]  B. Quéguiner,et al.  Effect of natural iron fertilization on carbon sequestration in the Southern Ocean , 2007, Nature.

[20]  M. Marcus,et al.  The speciation of marine particulate iron adjacent to active and passive continental margins , 2012 .

[21]  P. Statham,et al.  Pore-fluid Fe isotopes reflect the extent of benthic Fe redox recycling: evidence from continental shelf and deep-sea sediments , 2009 .

[22]  D. Canfield,et al.  The transition to a sulphidic ocean ∼ 1.84 billion years ago , 2004, Nature.

[23]  Francisco P. Chavez,et al.  Continental-shelf sediment as a primary source of iron for coastal phytoplankton , 1999, Nature.

[24]  P. Sedwick,et al.  Regulation of algal blooms in Antarctic Shelf Waters by the release of iron from melting sea ice , 1997 .

[25]  A. Anbar,et al.  Modern iron isotope perspective on the benthic iron shuttle and the redox evolution of ancient oceans , 2008 .

[26]  D. Mackey,et al.  Iron in the western Pacific: a riverine or hydrothermal source for iron in the Equatorial Undercurrent? , 2002 .

[27]  K. Coale,et al.  The flux of iron from continental shelf sediments: A missing source for global budgets , 2004 .

[28]  James K. B. Bishop,et al.  The continental margin is a key source of iron to the HNLC North Pacific Ocean , 2008 .

[29]  R. Berner,et al.  Carbon-sulfur-iron systematics of the uppermost deep-water sediments of the Black Sea , 1992 .

[30]  D. Rancourt,et al.  Nanogoethite is the dominant reactive oxyhydroxide phase in lake and marine sediments , 2003 .

[31]  N. Blair,et al.  Remineralization rates, recycling, and storage of carbon in Amazon shelf sediments , 1996 .

[32]  D. Canfield,et al.  The reactivity of sedimentary iron minerals toward sulfide , 1992 .

[33]  Mark A. Williamson,et al.  The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation , 1994 .

[34]  T. Lyons,et al.  Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela , 2003 .

[35]  N. Blair,et al.  Carbon remineralization in the Amazon–Guianas tropical mobile mudbelt: A sedimentary incinerator , 2006 .

[36]  T. Lyons Sulfur isotopic trends and pathways of iron sulfide formation in upper Holocene sediments of the anoxic Black Sea , 1997 .

[37]  D. Canfield,et al.  The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. , 1993, Geochimica et cosmochimica acta.

[38]  D. Canfield,et al.  Pathways of carbon oxidation in continental margin sediments off central Chile. , 1996, Limnology and oceanography.

[39]  M. Yücel,et al.  Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean , 2011 .

[40]  G. Luther,et al.  Spatial and temporal distribution of iron in the surface water of the northwestern Atlantic Ocean , 1996 .

[41]  R. Aller,et al.  Coupling of early diagenetic processes and sedimentary dynamics in tropical shelf environments: the Gulf of Papua deltaic complex , 2004 .

[42]  T. Anderson,et al.  SOURCES AND MECHANISMS FOR THE ENRICHMENT OF HIGHLY REACTIVE IRON IN EUXINIC BLACK SEA SEDIMENTS , 2004 .

[43]  C. Slomp,et al.  Iron and manganese cycling in different sedimentary environments on the North Sea continental margin , 1997 .

[44]  Philippe Van Cappellen,et al.  A multicomponent reactive transport model of early diagenesis: Application to redox cycling in coastal marine sediments , 1996 .