Investigation of wall stress and outflow rate in a flat-bottomed bin: A comparison of the DEM model results with the experimental measurements

Abstract The present paper provides a discrete element method (DEM) analysis of the filling and discharge processes of granular material in a 3D flat-bottomed bin. A granular aggregate of nearly round particles (20,400 pea grains, 7.2–7.8 mm in diameter) is considered. The numerical results are compared with the experimental data. The DEM analysis provides an accurate prediction of wall stress distribution and the outflow rate of discharge throughout the bottom orifice. The stress distribution developed within the granular material after filling and during the discharge phase is considered, and the transition from the active to passive stress state is discussed. This analysis aims to quantitatively predict the flow parameters related to the careful identification of the material parameters. The investigation presented may be useful for the ongoing development of DEM.

[1]  Beena Sukumaran,et al.  Influence of inherent particle characteristics on hopper flow rate , 2003 .

[2]  Harald Kruggel-Emden,et al.  Review and extension of normal force models for the Discrete Element Method , 2007 .

[3]  Aibing Yu,et al.  Numerical investigation of steady and unsteady state hopper flows , 2006 .

[4]  Aibing Yu,et al.  Steady-state granular flow in a 3D cylindrical hopper with flat bottom: macroscopic analysis , 2005 .

[5]  Rimantas Kačianauskas,et al.  Discrete element method and its application to the analysis of penetration into granular media , 2004 .

[6]  R. M. Nedderman,et al.  Principles of Powder Mechanics. : Pergamon Press, 1970. 221 pp.,£3. , 1971 .

[7]  Nicholas M. Spyrou,et al.  Microstructural simulation and imaging of granular flows in two- and three-dimensional hoppers , 1997 .

[8]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[9]  D. C. Rapaport,et al.  Granular flow from a silo: Discrete-particle simulations in three dimensions , 2001 .

[10]  S. Nemat-Nasser,et al.  A Micromechanical Description of Granular Material Behavior , 1981 .

[11]  Colin Thornton APPLICATIONS OF DEM TO PROCESS ENGINEERING PROBLEMS , 1992 .

[12]  G. A. Kohring Computer simulations of granular materials: the effects of mesoscopic forces , 1994 .

[13]  Brahmeshwar Mishra,et al.  A DEM Analysis of Flow Characteristics of Noncohesive Particles in Hopper , 2008 .

[14]  J. Michael Rotter,et al.  Numerical Modeling of Silo Filling. II: Discrete Element Analyses , 1999 .

[15]  P. A. Langston,et al.  Discrete element simulation of internal stress and flow fields in funnel flow hoppers , 1995 .

[16]  Wittmer,et al.  Stresses in silos: comparison between theoretical models and new experiments , 1999, Physical review letters.

[17]  Andrew Drescher,et al.  Analytical methods in bin-load analysis , 1991 .

[18]  C. Rycroft,et al.  Analysis of granular flow in a pebble-bed nuclear reactor. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Gerald H. Ristow,et al.  Simulating granular flow with molecular dynamics , 1992 .

[20]  Nagaratnam Sivakugan,et al.  Stress within a cohesionless granular fill in a storage vessel with sloping walls during initial static loading , 2009 .

[21]  A. Yu,et al.  Averaging method of granular materials. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  A. Couto,et al.  Numerical Simulation of Wall Pressure during Discharge of Granular Material from Cylindrical Silos with Eccentric Hoppers , 2003 .

[23]  Daiva Zilioniene,et al.  Evaluation of Soil Shear Strength Parameters via Triaxial Testing by Height Versus Diameter Ratio of Sample , 2009 .

[24]  P. A. Langston,et al.  Discrete element simulation of granular flow in 2D and 3D hoppers: Dependence of discharge rate and wall stress on particle interactions , 1995 .

[25]  Randall M. German,et al.  Particle packing characteristics , 1989 .

[26]  Robert W Day,et al.  Foundation Engineering Handbook: Design and Construction with 2006 International Building Code , 2005 .

[27]  Christopher E. Brennen,et al.  Gravity Flow of Granular Materials in Conical Hoppers , 1979 .

[28]  R. Nedderman Statics and Kinematics of Granular Materials: Euler's equation and rates of strain , 1992 .

[29]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[30]  Jan C. Jofriet,et al.  A Numerical Model for Flow of Granular Materials in Silos. Part 2: Model Validation , 1997 .

[31]  Algirdas Maknickas,et al.  Investigation of performance of programming approaches and languages used for numerical simulation of granular material by the discrete element method , 2006, Comput. Phys. Commun..

[32]  Zenon Mróz,et al.  Microscopic and macroscopic analysis of granular material behaviour in 3d flat-bottomed hopper by the discrete element method , 2007 .

[33]  Cyclic compaction of soils, grains and powders , 1995 .

[34]  Jörg Schwedes,et al.  Modelling of pressures and flow in silos , 1995 .

[35]  R. M. Nedderman,et al.  The thickness of the shear zone of flowing granular materials , 1980 .

[36]  P. Langston,et al.  Continuous potential discrete particle simulations of stress and velocity fields in hoppers: transition from fluid to granular flow , 1994 .

[37]  César Treviño,et al.  Velocity field measurements in granular gravity flow in a near 2D silo , 1998 .

[38]  Bernhard Peters,et al.  An approach to simulate the motion of spherical and non-spherical fuel particles in combustion chambers , 2001 .

[39]  Incompressible granular flow from wedge-shaped hoppers , 2005 .

[40]  Andrew Drescher,et al.  Some aspects of flow in granular materials in hoppers , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[41]  Jennifer S. Curtis,et al.  Predicting the flow mode from hoppers using the discrete element method , 2009 .

[42]  G. H. Rong,et al.  NUMERICAL MODELING OF SILO FILLING. I: CONTINUUM ANALYSES , 1999 .

[43]  Zenon Mróz,et al.  Discrete-particle investigation of friction effect in filling and unsteady/steady discharge in three-dimensional wedge-shaped hopper , 2008 .

[44]  M. Bazant,et al.  Velocity profile of granular flows inside silos and hoppers , 2005, cond-mat/0501568.

[45]  R. D. Mindlin Elastic Spheres in Contact Under Varying Oblique Forces , 1953 .

[46]  R. M. Nedderman,et al.  A kinematic model for the flow of granular materials , 1979 .

[47]  S. Masson,et al.  Effect of particle mechanical properties on silo flow and stresses from distinct element simulations , 2000 .

[48]  G. A. Kohring Dynamical Simulations of Granular Flows on Multi-Processor Computers , 1996 .

[49]  Jonas Amšiejus,et al.  Stress‐strain analysis in the soil sample during laboratory testing , 2007 .

[50]  J. M. Rotter,et al.  Elastic predictions of pressures in conical silo hoppers , 1991 .

[51]  Jørgen Nielsen,et al.  On the use of plate-type normal pressure cells in silos: Part 2: Validation for pressure measurements , 2010 .

[52]  Francisco Ayuga,et al.  On the use of plate-type normal pressure cells in silos , 2006 .

[53]  J. Tejchman,et al.  Bedding effects in bulk solids in silos: experiments and a polar hypoplastic approach , 2000 .

[54]  I. Yalcin,et al.  Physical properties of pea (Pisum sativum) seed , 2007 .

[55]  Graham J. Weir,et al.  A mathematical model for dilating, non-cohesive granular flows in steep-walled hoppers , 2004 .

[56]  N. Mohsenin Physical properties of plant and animal materials , 1970 .

[57]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[58]  Gerald H. Ristow,et al.  Forces on the walls and stagnation zones in a hopper filled with granular material , 1995 .

[59]  Christopher E. Brennen,et al.  Computer Simulation of Shear Flows of Granular Material , 1983 .

[60]  É. Clément,et al.  Overshoot effect in the Janssen granular column: a crucial test for granular mechanics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  W. W. Mullins,et al.  Critique and comparison of two stochastic theories of gravity-induced particle flow , 1979 .

[62]  Slawomir Blonski,et al.  Optical technique DPIV in measurements of granular material flows, Part 1 of 3—plane hoppers , 2005 .

[63]  Rimantas Kačianauskas,et al.  Investigation of rice grain flow by multi-sphere particle model with rolling resistance , 2011 .

[64]  D. Maza,et al.  The flow rate of granular materials through an orifice , 2007, 0707.4550.

[65]  Marek Molenda,et al.  DEM simulation of the packing structure and wall load in a 2-dimensional silo , 2008 .