Consistent estimation in an implicit quadratic measurement error model

An adjusted least squares estimator is derived that yields a consistent estimate of the parameters of an implicit quadratic measurement error model. In addition, a consistent estimator for the measurement error noise variance is proposed. Important assumptions are: (1) all errors are uncorrelated identically distributed and (2) the error distribution is normal. The estimators for the quadratic measurement error model are used to estimate consistently conic sections and ellipsoids. Simulation examples, comparing the adjusted least squares estimator with the ordinary least squares method and the orthogonal regression method, are shown for the ellipsoid fitting problem.

[1]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[2]  Kenichi Kanatani,et al.  Statistical Bias of Conic Fitting and Renormalization , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  S. Huffel,et al.  Total Least Squares and Errors-in-Variables Modeling : Analysis, Algorithms and Applications , 2002 .

[4]  Philip E. Gill,et al.  Practical optimization , 1981 .

[5]  H. Nyquist Least orthogonal absolute deviations , 1988 .

[6]  H. Rosenthal On the subspaces ofLp(p>2) spanned by sequences of independent random variables , 1970 .

[7]  Yves Nievergelt,et al.  Hyperspheres and hyperplanes fitted seamlessly by algebraic constrained total least-squares , 2001 .

[8]  J. Neyman,et al.  Consistent Estimates Based on Partially Consistent Observations , 1948 .

[9]  W. Kahan,et al.  The Rotation of Eigenvectors by a Perturbation. III , 1970 .

[10]  Zhengyou Zhang,et al.  Parameter estimation techniques: a tutorial with application to conic fitting , 1997, Image Vis. Comput..

[11]  D. Ruppert,et al.  Measurement Error in Nonlinear Models , 1995 .

[12]  Sabine Van Huffel,et al.  Consistent least squares fitting of ellipsoids , 2004, Numerische Mathematik.

[13]  W. Gander,et al.  Least-squares fitting of circles and ellipses , 1994 .

[14]  Sabine Van Huffel,et al.  Consistent fundamental matrix estimation in a quadratic measurement error model arising in motion analysis , 2002, Comput. Stat. Data Anal..

[15]  L. K. Naidu An adjusted linear estimator , 1990 .

[16]  Peter Meer,et al.  Unbiased Estimation of Ellipses by Bootstrapping , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Andrew W. Fitzgibbon,et al.  Direct Least Square Fitting of Ellipses , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Alexander Kukush,et al.  On Consistent Estimators in Nonlinear Functional Errors-In-Variables Models , 2002 .

[19]  P. Wedin Perturbation bounds in connection with singular value decomposition , 1972 .

[20]  I. Markovsky,et al.  Consistent estimation in the bilinear multivariate errors-in-variables model , 2003 .

[21]  J. Eltinge Measurement error models for time series , 1987 .