Implementation of Operators via Filter Banks: Hardy Wavelets and Autocorrelation Shell

Abstract We consider implementation of operators via filter banks in the framework of the multiresolution analysis. Our method is particularly efficient for convolution operators. Although our method of applying operators to functions may be used with any wavelet basis with a sufficient number of vanishing moments, we distinguish two particular settings, namely, orthogonal bases and the autocorrelation shell. We apply our method to evaluate the Hilbert transform of signals and derive a fast algorithm capable of achieving any given accuracy. We consider the case where the wavelet is the autocorrelation function of another wavelet associated with an orthonormal basis and where our method provides a fast algorithm for the computation of the modulus and the phase of signals. Moreover, the resulting wavelet may be viewed as being (approximately, but with any given accuracy) in the Hardy spaceH2(open face R).

[1]  Ph. Tchamitchian,et al.  Wavelets: Time-Frequency Methods and Phase Space , 1992 .

[2]  Naoki Saito,et al.  Multiresolution representations using the auto-correlation functions of compactly supported wavelets , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[3]  Y. Meyer Ondelettes et fonctions splines , 1987 .

[4]  Bernard Delyon,et al.  On the Computation of Wavelet Coefficients , 1997 .

[5]  Richard Kronland-Martinet,et al.  Reading and Understanding Continuous Wavelet Transforms , 1989 .

[6]  Bruno Torrésani,et al.  Pyramidal algorithms for Littlewood-Paley decompositions , 1995 .

[7]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[8]  G. Beylkin,et al.  On the representation of operators in bases of compactly supported wavelets , 1992 .

[9]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[10]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[11]  J. CARRIERt,et al.  A FAST ADAPTIVE MULTIPOLE ALGORITHM FOR PARTICLE SIMULATIONS * , 2022 .

[12]  李幼升,et al.  Ph , 1989 .

[13]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[14]  Pierre Gilles Lemarié-Rieusset Sur l'existence des analyses multi-résolutions en théorie des ondelettes , 1992 .

[15]  Mark J. T. Smith,et al.  Exact reconstruction techniques for tree-structured subband coders , 1986, IEEE Trans. Acoust. Speech Signal Process..

[16]  P. Auscher Il n'existe pas de bases d'ondelettes régulières dans l'espace de Hardy H2(R) , 1992 .

[17]  Richard Kronland-Martinet,et al.  Asymptotic wavelet and Gabor analysis: Extraction of instantaneous frequencies , 1992, IEEE Trans. Inf. Theory.

[18]  Naoki Saito,et al.  Multiresolution representations using the autocorrelation functions of compactly supported wavelets , 1993, IEEE Trans. Signal Process..

[19]  Bruno Torrésani,et al.  Characterization of signals by the ridges of their wavelet transforms , 1997, IEEE Trans. Signal Process..

[20]  V. Rokhlin Rapid solution of integral equations of classical potential theory , 1985 .

[21]  M. Victor Wickerhauser,et al.  Adapted wavelet analysis from theory to software , 1994 .

[22]  D. Esteban,et al.  Application of quadrature mirror filters to split band voice coding schemes , 1977 .