Structural correlations for 1H, 13C and 15N NMR coordination shifts in Au(III), Pd(II) and Pt(II) chloride complexes with lutidines and collidine

1H, 13C and 15N NMR studies of gold(III), palladium(II) and platinum(II) chloride complexes with dimethylpyridines (lutidines: 2,3‐lutidine, 2,3lut; 2,4‐lutidine, 2,4lut; 3,5‐lutidine, 3,5lut; 2,6‐lutidine, 2,6lut) and 2,4,6‐trimethylpyridine (2,4,6‐collidine, 2,4,6col) having general formulae [AuLCl3], trans‐[PdL2Cl2] and trans‐/cis‐[PtL2Cl2] were performed and the respective chemical shifts (δ1H, δ13C, δ15N) reported. The deshielding of protons and carbons, as well as the shielding of nitrogens was observed. The 1H, 13C and 15N NMR coordination shifts (Δ1Hcoord, Δ13Ccoord, Δ15Ncoord; Δcoord = δcomplex − δligand) were discussed in relation to some structural features of the title complexes, such as the type of the central atom [Au(III), Pd(II), Pt(II)], geometry (trans‐ or cis‐), metal‐nitrogen bond lengths and the position of both methyl groups in the pyridine ring system. Copyright © 2010 John Wiley & Sons, Ltd.

[1]  E. Szłyk,et al.  1H, 13C, 15N and 195Pt NMR studies of Au(III) and Pt(II) chloride organometallics with 2‐phenylpyridine , 2009, Magnetic resonance in chemistry : MRC.

[2]  E. Szłyk,et al.  1H, 13C and 15N nuclear magnetic resonance coordination shifts in Au(III), Pd(II) and Pt(II) chloride complexes with phenylpyridines , 2009, Magnetic resonance in chemistry : MRC.

[3]  M. Fakhfakh,et al.  Synthesis and NMR characterization of the novel mixed-ligand Pt(II) complexes cis-and trans-Pt(Ypy)(pyrimidine)Cl2 and trans,trans-Cl2(Ypy)Pt(μ-pyrimidine)Pt(Ypy)Cl2 (Ypy= pyridine derivative) , 2009 .

[4]  E. Szłyk,et al.  Experimental and quantum‐chemical studies of 1H, 13C and 15N NMR coordination shifts in Au(III), Pd(II) and Pt(II) chloride complexes with picolines , 2009, Magnetic resonance in chemistry : MRC.

[5]  M. Fakhfakh,et al.  Synthesis and characterization of the novel Pt(II) complexes of the types cis- and trans-Pt(Ypy)(pyrazine)Cl2, K2[Cl3Pt(μ-pyrazine)PtCl3] and trans, trans-(Ypy)Cl2Pt(μ-pyrazine)Pt(Ypy)Cl2 (Ypy = pyridine derivative) , 2009 .

[6]  F. Rochon,et al.  Synthesis and multinuclear magnetic resonance spectroscopy of the novel ionic Pt(II) mixed-ligands complexes cis- and trans-[Pt(pyrazine)2(Ypy)2](NO3)2 where Ypy = pyridine derivative , 2008 .

[7]  E. Szłyk,et al.  Experimental and quantum‐chemical studies of 1H, 13C and 15N NMR coordination shifts in Pd(II) and Pt(II) chloride complexes with quinoline, isoquinoline, and 2,2′‐biquinoline , 2007, Magnetic resonance in chemistry : MRC.

[8]  E. Szłyk,et al.  Experimental and quantum‐chemical studies of 1H, 13C and 15N NMR coordination shifts in Pd(II) and Pt(II) chloride complexes with methyl and phenyl derivatives of 2,2′‐bipyridine and 1,10‐phenanthroline , 2007, Magnetic resonance in chemistry : MRC.

[9]  M. Bortoluzzi,et al.  Displacement of Neutral Nitrogen Donors by Chloride in AuCl3(am) (am = Pyridines and Amines): Kinetics and DFT Calculations Show the Effects of Basicity and π‐Acceptor Ability , 2007 .

[10]  E. Szłyk,et al.  1H, 13C and 15N NMR coordination shifts in gold(III), cobalt(III), rhodium(III) chloride complexes with pyridine, 2,2′‐bipyridine and 1,10‐phenanthroline , 2007, Magnetic resonance in chemistry : MRC.

[11]  K. Sakai,et al.  cis-Dichlorobis(4-methylpyridine-κN)platinum(II) , 2007 .

[12]  E. Szłyk,et al.  Experimental and quantum‐chemical studies of 15N NMR coordination shifts in palladium and platinum chloride complexes with pyridine, 2,2′‐bipyridine and 1,10‐phenanthroline , 2006, Magnetic resonance in chemistry : MRC.

[13]  L. Pazderski 15N NMR coordination shifts in transition metal chloride complexes with azines versus type of central ion , 2006 .

[14]  S. Smirnov,et al.  NMR studies of solid state-solvent and H/D isotope effects on hydrogen bond geometries of 1:1 complexes of collidine with carboxylic acids , 2004 .

[15]  S. Smirnov,et al.  Low-temperature NMR studies of the structure and dynamics of a novel series of acid-base complexes of HF with collidine exhibiting scalar couplings across hydrogen bonds. , 2003, Journal of the American Chemical Society.

[16]  E. Zangrando,et al.  Cationic palladium complexes with mono- and bidentate nitrogen-donor ligands: synthesis, characterization and reactivity in CO/ styrene copolymerization reaction , 2003 .

[17]  A. Rotondo,et al.  NMR Investigation and Dynamic Behaviour of [2,2′‐Bipyridylbis(pyridine)platinum(II)]2+ and Related Cationic Complexes − Crystal Structure of [Pt(bipy)(py)2](PF6)2 , 2003 .

[18]  C. Tessier,et al.  Multinuclear magnetic resonance studies of the aqueous products of the complexes cis- and trans-Pt(Ypy)2(NO3)2 where Ypy = pyridine derivative , 2002 .

[19]  A. P. Burtsev,et al.  Influence of the temperature‐dependent dielectric constant on the H/D isotope effects on the NMR chemical shifts and the hydrogen bond geometry of the collidine–HF complex in CDF3/CDClF2 solution , 2001 .

[20]  G. Buntkowsky,et al.  1H/15N NMR chemical shielding, dipolar 15N,2H coupling and hydrogen bond geometry correlations in a novel series of hydrogen‐bonded acid–base complexes of collidine with carboxylic acids , 2001 .

[21]  C. Tessier,et al.  Synthesis, IR and multinuclear NMR spectroscopies and crystallographic studies of complexes of the type cis- and trans-Pt(pyridine)2(NO3)2 , 2001 .

[22]  S. Smirnov,et al.  Hydrogen/Deuterium-Isotope Effects on NMR Chemical Shifts and Symmetry of Homoconjugated Hydrogen-Bonded Ions in Polar Solution , 2000 .

[23]  C. Tessier,et al.  MULTINUCLEAR NMR STUDY AND CRYSTAL STRUCTURES OF COMPLEXES OF THE TYPES CIS- AND TRANS-PT(YPY)2X2, WHERE YPY = PYRIDINE DERIVATIVE AND X = CL AND I , 1999 .

[24]  S. Smirnov,et al.  Nuclear Scalar Spin–Spin Coupling Reveals Novel Properties of Low‐Barrier Hydrogen Bonds in a Polar Environment , 1999 .

[25]  M. Lanfranchi,et al.  Chirality in mononuclear square planar complexes , 1999 .

[26]  B. Ahrens,et al.  Gold(I)-Komplexe mit Aminliganden, II. (Methylpyridin)-Komplexe von Gold(I) Gold(I) / Complexes with Amine Ligands, II. Methylpyridine Complexes of Gold(I) , 1998 .

[27]  Kiyoshi Matsumoto,,et al.  Correlation of 15N NMR Chemical Shifts with Calculated Partial Charges in Pyridine N-Oxides , 1997 .

[28]  M. Szafran,et al.  Nitrogen-15 NMR studies of hydrogen bonding and proton transfer in complexes of pyridine N-oxides with dichloroacetic acid in CDCl3 , 1996 .

[29]  C. Bensimon,et al.  Multinuclear NMR spectra of [Pt(L)Cl3]− (L = pyridine derivatives) complexes and crystal structure of trans-Pt(2,6-di(hydroxymethyl)pyridine)2Cl2•2H2O , 1996 .

[30]  M. Zaworotko,et al.  X-ray crystal structure oftrans-dichlorobis(2,6-lutidine)palladium(II) , 1996 .

[31]  C. Bensimon,et al.  Synthesis and study of Pt(II)–nitrile complexes. Multinuclear NMR spectra and crystal structures of compounds of the types [Pt(R-CN)Cl3]− and cis and trans-Pt(R-CN)2Cl2 , 1996 .

[32]  N. Dung,et al.  Structure du trans-dichlorobis(pyridine)palladium(II) , 1993 .

[33]  Francesca Guidi,et al.  The cis- and trans-effects of cyanide in substitution at platinum(II) , 1993 .

[34]  Hajime Kanatomi,et al.  Trinuclear complexation of 2,6-bis(acetylacetoxymethyl)pyridine with Pd(II) and Cu(II) ions , 1991 .

[35]  M. Tomaselli,et al.  Reactivity of heterocyclic nitrogen donors in systems containing the tetrachloroaurate(III) anion , 1991 .

[36]  W. Holzer,et al.  Inter‐ and intra‐molecular hydrogen bonding effects on geminal 15N, 1H spin coupling and 15N chemical shifts in pyridine derivatives , 1989 .

[37]  S. Misumi,et al.  Dual resonance functionality in pyridine 1-oxides. A double multinuclear NMR approach , 1988 .

[38]  M. Szafran,et al.  Nitrogen‐15 nuclear magnetic resonance studies of hydrogen bonding and proton transfer in some pyridine trifluoroacetates in dichloromethane , 1986 .

[39]  F. Rochon,et al.  Di‐μ‐chloro‐dichlorobis(2,6‐lutidine)diplatinum(II) dichloromethane solvate , 1981 .

[40]  W. E. Smith,et al.  The vibrational properties of some gold(iii)-halide complexes , 1981 .

[41]  F. Rochon,et al.  Tetraammineplatinum(II) bis[trichloro(2,6-dimethylpyridine)platinate(II)] , 1980 .

[42]  John D. Roberts,et al.  Effects of protonation and hydrogen bonding on nitrogen-15 chemical shifts of compounds containing the >C:N-Group1* , 1980 .

[43]  L. Thompson Trans platinum(II) complexes with pyridine and substituted pyridines , 1980 .

[44]  W. Smith,et al.  The electronic spectra of some gold(III) complexes , 1979 .

[45]  F. Caruso,et al.  Crystal and molecular Structure of trans-dichloro (η-ethylene)(2,6-dimethylpyridine)platinum(II) , 1979 .

[46]  G. Furst,et al.  Natural-abundance nitrogen-15 nuclear magnetic resonance spectroscopy. Nitrogen chemical shifts of alkylpyridines, picolinium, and lutidinium ions, and picoline N-oxides , 1978 .

[47]  F. Caruso,et al.  Crystal and molecular structures oftrans-dichloro-(ethylene) (4-methylpyridine)platinum(II) andtrans-dichloro(ethylene) (2,4,6-trimethylpyridine)platinum(II) , 1978 .

[48]  P. Kong,et al.  Reactions of K2PtCl4 with pyridine derivatives in dimethylformamide and synthesis of potassium trichloro(pyridine)platinum(II) , 1978 .

[49]  K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds , 1978 .

[50]  F. Rochon,et al.  The crystal structure of potassium trichloro(2,6-lutidine)platinum(II) , 1976 .

[51]  R. Clark,et al.  The infrared spectra (450–70 cm−1) of square planar pyridine an substituted pyridine complexes of gold(III) , 1968 .

[52]  A. Orio,et al.  The cis effect of the cyanide group in substitution reactions of square-planar gold(III) complexes , 1967 .

[53]  M. Tobe,et al.  The Mechanism of the Replacement of Heterocyclic Amines from Some Aminotrichlorogold(III) Complexes , 1966 .