Ibotenic acid lesions of the lateral substantia nigra restore visual orientation behavior in the hemianopic cat

Transaction of non‐tectotectal fibers in the caudal one‐half of the commissure of the superior colliculus restores visual orienting to a cat previously rendered hemianopic by a large unilateral visual cortical lesion. Other observations related to this recovery phenomenon (i.e., the Sprague effect) have suggested that the caudal commissural fibers whose destruction produces the recovery (1) are contralateral afferents to the superior colliculus on the side of the cortical lesion, and (2) profoundly influence visuo‐motor processing in this superior colliculus. We performed anatomical and behavioral experiments to determine which of the more than 40 contralateral collicular afferents are directly involved in the Sprague effect.

[1]  L R Harris,et al.  The superior colliculus and movements of the head and eyes in cats , 1980, The Journal of physiology.

[2]  J. Deniau,et al.  Disinhibition as a basic process in the expression of striatal functions. I. The striato-nigral influence on tecto-spinal/tecto-diencephalic neurons , 1985, Brain Research.

[3]  M. Giguére,et al.  Comparative morphology of the substantia nigra and ventral tegmental area in the monkey, cat and rat , 1983, Brain Research Bulletin.

[4]  A. Rosenquist,et al.  Connections of the multiple visual cortical areas with the lateral posterior-pulvinar complex and adjacent thalamic nuclei in the cat , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  B. V. Updyke,et al.  A reevaluation of the functional organization and cytoarchitecture of the feline lateral posterior complex, with observations on adjoining cell groups , 1983, The Journal of comparative neurology.

[6]  O. Ottersen,et al.  Demonstration of nigrotectal and nigroreticular projections in the cat by axonal transport of proteins , 1976, Brain Research.

[7]  P. Mcgeer,et al.  Presumptive γ-aminobutyric acid pathways from the midbrain to the superior colliculus studied by a combined horseradish peroxidase-γ-aminobutyric acid transaminase pharmacohistochemical method , 1984, Neuroscience.

[8]  K. Watanabe,et al.  The cells of origin of the incertofugal projections to the tectum, thalamus, tegmentum and spinal cord in the rat: A study using the autoradiographic and horseradish peroxidase methods , 1982, Neuroscience.

[9]  P. Schiller,et al.  Discharge characteristics of single units in superior colliculus of the alert rhesus monkey. , 1971, Journal of neurophysiology.

[10]  S. Edwards Autoradiographic studies of the projections of the midbrain reticular formation: Descending projections of nucleus cuneiformis , 1975, The Journal of comparative neurology.

[11]  D. Guitton,et al.  Tectospinal neurons in the cat have discharges coding gaze position error , 1985, Brain Research.

[12]  Mitsuo Yoshida,et al.  Electrophysiological evidence for branching nigral projections to pontine reticular formation, superior colliculus and thalamus , 1982, Brain Research.

[13]  Bradley G. Klein,et al.  Dendrites of deep layer, somatosensory superior collicular neurons extend into the superficial laminae , 1984, Brain Research.

[14]  J. Sprague,et al.  Anatomical organization of pretectal nuclei and tectal laminae in the cat , 1974, The Journal of comparative neurology.

[15]  J. Glowinski,et al.  Interdependence of the nigrostriatal dopaminergic systems on the two sides of the brain in the cat. , 1977, Science.

[16]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. , 1983, Journal of neurophysiology.

[17]  O. Ottersen,et al.  Mesencephalic and diencephalic afferents to the superior colliculus and periaqueductal gray substance demonstrated by retrograde axonal transport of horseradish peroxidase in the cat , 1978, Brain Research.

[18]  R. Wurtz,et al.  Activity of superior colliculus in behaving monkey. 3. Cells discharging before eye movements. , 1972, Journal of neurophysiology.

[19]  A K Moschovakis,et al.  Nigral inhibitory termination on efferent neurons of the superior colliculus: An intracellular horseradish peroxidase study in the cat , 1985, The Journal of comparative neurology.

[20]  A. L. Berman The brain stem of the cat : a cytoarchitectonic atlas with stereotaxic coordinates , 1968 .

[21]  J. E. Albano,et al.  Visual-motor function of the primate superior colliculus. , 1980, Annual review of neuroscience.

[22]  A M Graybiel,et al.  The afferent and efferent connections of the feline nucleus tegmenti pedunculopontinus, pars compacta , 1983, The Journal of comparative neurology.

[23]  R. Rhoades,et al.  Indirect visual cortical input to the deep layers of the hamster's superior colliculus via the basal ganglia , 1982, The Journal of comparative neurology.

[24]  A. Parent,et al.  Midbrain tegmental projections of nucleus reticularis thalami of cat and monkey: A retrograde transport and antidromic invasion study , 1984, The Journal of comparative neurology.

[25]  J. K. Harting,et al.  Projections of the superior colliculus to the supraspinal nucleus and the cervical spinal cord gray of the cat , 1982, Brain Research.

[26]  J. Glowinski,et al.  Role of the dendritic release of dopamine in the reciprocal control of the two nigro-striatal dopaminergic pathways , 1979, Nature.

[27]  C. K. Peck,et al.  Visuo‐oculomotor properties of cells in the superior colliculus of the alert cat , 1980, The Journal of comparative neurology.

[28]  D. M. Feeney,et al.  Sensory neglect after lesions of substantia nigra or lateral hypothalamus: Differential severity and recovery of function , 1979, Brain Research.

[29]  A. Imperato,et al.  A re-evaluation of the role of superior colliculus in turning behaviour , 1982, Brain Research.

[30]  M. Mesulam,et al.  Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. , 1978, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[31]  J. Sprague,et al.  Interaction of Cortex and Superior Colliculus in Mediation of Visually Guided Behavior in the Cat , 1966, Science.

[32]  W. C. Hall,et al.  The nigrotectal projection in the cat: An electron microscope autoradiographic study , 1987, Neuroscience.

[33]  J. Glowinski,et al.  Dendritic release of dopamine in the substantia nigra , 1981, Nature.

[34]  A M Graybiel,et al.  Fiber connections of the basal ganglia. , 1979, Progress in brain research.

[35]  J. T. Weber,et al.  Neuroanatomical studies of the nigrotectal projection in the cat , 1988, The Journal of comparative neurology.

[36]  S. Vincent,et al.  The nigrotectal projection: a biochemical and ultrastructural characterization , 1978, Brain Research.

[37]  The nuclear pattern of the non‐tectal portions of the midbrain and isthmus in the dog and cat , 1943 .

[38]  A. Rosenquist,et al.  Recovery from cortical blindness mediated by destruction of nontectotectal fibers in the commissure of the superior colliculus in the cat , 1989, The Journal of comparative neurology.

[39]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. , 1983, Journal of neurophysiology.

[40]  E. Garcia-Rill,et al.  The spontaneous firing patterns of forebrain neurons. III. Prevention of induced asymmetries in caudate neuronal firing rates by unilateral thalamic lesions , 1977, Brain Research.

[41]  G. Collingridge,et al.  Evidence for the participation of nigrotectal γ-aminobutyrate-containing neurones in striatal and nigral-derived circling in the rat , 1982, Neuroscience.

[42]  H. Tokuno,et al.  Organization of the nigrotectospinal pathway in the cat: a light and electron microscopic study , 1987, Brain Research.

[43]  B. Stein,et al.  Sources of subcortical projections to the superior colliculus in the cat , 1979, The Journal of comparative neurology.

[44]  S B Edwards,et al.  The commissural projection of the superior colliculus in the cat , 1977, The Journal of comparative neurology.

[45]  R. M. Beckstead Long collateral branches of substantia nigra pars reticulata axons to thalamus, superior colliculus and reticular formation in monkey and cat. Multiple retrograde neuronal labeling with fluorescent dyes , 1983, Neuroscience.

[46]  R. Wurtz,et al.  Modification of saccadic eye movements by GABA-related substances. II. Effects of muscimol in monkey substantia nigra pars reticulata. , 1985, Journal of neurophysiology.

[47]  Sherman Sm Visual fields of cats with cortical and tectal lesions. , 1974 .

[48]  S. Sherman,et al.  The effect of superior colliculus lesions upon the visual fields of cats with cortical ablations , 1977, The Journal of comparative neurology.

[49]  A. Moschovakis,et al.  Observations on the somatodendritic morphology and axonal trajectory of intracellularly HRP‐Labeled efferent neurons located in the deeper layers of the superior colliculus of the cat , 1985, The Journal of comparative neurology.

[50]  E. Murray,et al.  Organization of tectospinal neurons in the cat and rat superior colliculus , 1982, Brain Research.

[51]  J. Walters,et al.  Endogenous dopamine can modulate inhibition of substantia nigra pars reticulata neurons elicited by GABA iontophoresis or striatal stimulation , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  Huerta Mf,et al.  Tectal control of spinal cord activity: neuroanatomical demonstration of pathways connecting the superior colliculus with the cervical spinal cord grey. , 1982 .

[53]  R. Mooney,et al.  The projection from the superficial to the deep layers of the superior colliculus: an intracellular horseradish peroxidase injection study in the hamster , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  R H Wurtz,et al.  Organization of monkey superior colliculus: intermediate layer cells discharging before eye movements. , 1976, Journal of neurophysiology.

[55]  A. Parent,et al.  The subcortical afferents to caudate nucleus and putamen in primate: A fluorescence retrograde double labeling study , 1983, Neuroscience.

[56]  David A. Hopkins,et al.  Substantia nigra projections to the reticular formation, superior colliculus and central gray in the rat, cat and monkey , 1976, Neuroscience Letters.

[57]  D. M. Rioch Studies on the diencephalon of carnivora. Part II. Certain nuclear configurations and fiber connections of the subthalamus and midbrain of the dog and cat , 1929 .

[58]  J. Marshall,et al.  Sensory inattention in rats with 6-hydroxydopamine-induced degeneration of ascending dopaminergic neurons: Apomorphine-induced reversal of deficits , 1979, Experimental Neurology.

[59]  Ann M. Graybiel,et al.  Organization of the nigrotectal connection: an experimental tracer study in the cat , 1978, Brain Research.

[60]  J. T. Weber,et al.  The projection of frontal cortical oculomotor areas to the superior colliculus in the domestic cat , 1986, The Journal of comparative neurology.

[61]  P. Schiller,et al.  Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. , 1972, Journal of neurophysiology.

[62]  E. Taber The cytoarchitecture of the brain stem of the cat. I. Brain stem nuclei of cat , 1961, The Journal of comparative neurology.

[63]  Peck Ck,et al.  Saccade-related neurons in cat superior colliculus: pandirectional movement cells with postsaccadic responses. , 1984 .

[64]  N. Berman,et al.  Connections of the pretectum in the cat , 1977, The Journal of comparative neurology.

[65]  A. Graybiel,et al.  Convergence of afferents from frontal cortex and substantia nigra onto acetylcholinesterase-rich patches of the cat's superior colliculus , 1985, Neuroscience.

[66]  J. K. Harting,et al.  The Mammalian Superior Colliculus: Studies of Its Morphology and Connections , 1984 .

[67]  A. Graybiel A satellite system of the superior colliculus: the parabigeminal nucleus and its projections to the superficial collicular layers , 1978, Brain Research.

[68]  J T McIlwain,et al.  Visual cortical inputs to deep layers of cat's superior colliculus. , 1983, Journal of neurophysiology.

[69]  M. Cynader,et al.  Response characteristics of single cells in the monkey superior colliculus following ablation or cooling of visual cortex. , 1974, Journal of neurophysiology.

[70]  D. Sparks Functional properties of neurons in the monkey superior colliculus: Coupling of neuronal activity and saccade onset , 1978, Brain Research.

[71]  V. Perciavalle Substantia nigra influences on the reticulospinal neurons: An electrophysiological and ionophoretic study in cats and rats , 1987, Neuroscience.

[72]  G. Chevalier,et al.  Evidence for a GABAergic inhibitory nigrotectal pathway in the rat , 1981, Neuroscience Letters.

[73]  T. Ljungberg,et al.  Sensory inattention produced by 6-hydroxydopamine-induced degeneration of ascending dopamine neurons in the brain , 1976, Experimental Neurology.

[74]  Wolfram Schultz,et al.  Depletion of dopamine in the striatum as an experimental model of parkinsonism: direct effects and adaptive mechanisms , 1982, Progress in Neurobiology.

[75]  J. T. Weber,et al.  The precise origin of the tectospinal pathway in three common laboratory animals: A study using the horse-radish peroxidase method , 1979, Neuroscience Letters.

[76]  S B Edwards,et al.  A comparison of the intranigral distribution of nigrotectal neurons labeled with horseradish peroxidase in the monkey, cat, and rat , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[77]  A. Graybiel,et al.  Subdivisions of the dopamine-containing A8-A9-A10 complex identified by their differential mesostriatal innervation of striosomes and extrastriosomal matrix , 1987, Neuroscience.

[78]  A M Graybiel,et al.  Direct and indirect preoculomotor pathways of the brainstem: An autoradiographic study of the pontine reticular formation in the cat , 1977, The Journal of comparative neurology.

[79]  H. Clamann,et al.  The control of eye movements by the superior colliculus in the alert cat , 1976, Brain Research.