Orientation-dependent surface tension functions for surface energy minimizing calculations

Previous numerical methods that calculate equilibrium particle shape to study thermodynamic and kinetic processes depend on interfacial (surface) free energy functions γ($$\skew7\hat{n}$$) that have cubic symmetry and thus produce Wulff shapes W of cubic symmetry. This work introduces a construction yielding the minimal surface energy density γconvex(W) that can be determined for anyW. Each γ($$\skew7\hat{n}$$) that belongs to the equivalence class γ(W) bounded by γconvex(W) can be used in an energy-minimizing calculation that depends only on W. For practical numerical calculations, this work gives two methods taking directional distance from specified orientation minima as a parameter to produce analytic forms of γ($$\skew7\hat{n}$$) giving W as the equilibrium shape for (an otherwise unconstrained) fixed volume. Included are several two- and three-dimensional examples that demonstrate the application and utility of the model γ($$\skew7\hat{n}$$) functions.

[1]  Kenneth A. Brakke,et al.  The Surface Evolver , 1992, Exp. Math..

[2]  G. Gottstein,et al.  Theory of grain boundary motion in the presence of mobile particles , 1993 .

[3]  R. Zia Equilibrium shapes of droplets across grain boundaries , 1998 .

[4]  J. Taylor,et al.  Crystalline variational problems , 1978 .

[5]  John W. Cahn,et al.  Crystal shapes and phase equilibria: A common mathematical basis , 1996 .

[6]  W. Craig Carter,et al.  Variational methods for microstructural-evolution theories , 1997 .

[7]  D. W. Hoffman,et al.  A Vector Thermodynamics for Anisotropic Surfaces—II. Curved and Faceted Surfaces , 1974 .

[8]  H. Aaronson,et al.  Influence of faceting upon the equilibrium shape of nuclei at grain boundaries—II. Three-dimensions , 1975 .

[9]  Thomas A. Read,et al.  Physics of Powder Metallurgy , 1949 .

[10]  I. Fonseca The Wulff theorem revisited , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[11]  A. Mallik,et al.  Computer calculations of phase diagrams , 1986 .

[12]  J. Taylor,et al.  II—mean curvature and weighted mean curvature , 1992 .

[13]  E. Siem,et al.  The equilibrium shape of anisotropic interfacial particles , 2004 .

[14]  D. W. Hoffman,et al.  A vector thermodynamics for anisotropic surfaces: I. Fundamentals and application to plane surface junctions , 1972 .

[15]  Irene Fonseca,et al.  A uniqueness proof for the Wulff Theorem , 1991, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[16]  F. Almgren,et al.  OPTIMAL GEOMETRY IN EQUILIBRIUM AND GROWTH , 1995 .

[17]  A. Evans,et al.  Microstructure development during final/intermediate stage sintering—I. Pore/grain boundary separation , 1982 .

[18]  Morphology of grain growth in response to diffusion induced elastic stresses: cubic systems , 1993 .

[19]  Conyers Herring,et al.  Some Theorems on the Free Energies of Crystal Surfaces , 1951 .