Laser technology for astronomical adaptive optics

In this paper we review the current status of work in the sodium guidestar laser arena from the perspective of an astronomical AO system developer and user. Sodium beacons provide the highest and most useful guidestars for the 8m and larger class telescopes, but unfortunately sodium lasers are expensive and difficult to build at high output powers. Here we present highlights of recent advancements in the laser technology. Perhaps most dramatic are the recent theoretical and experimental efforts leading to better understanding the physics of coupling the laser light to the upper altitude sodium for best return signal. In addition we will discuss the key issues which affect LGS AO system performance and their technology drivers, including: pulse format, guidestar elongation, crystal and fiber technology, and beam transport.

[1]  Raymond J. Beach,et al.  Multi-watt 589nm fiber laser source , 2006, SPIE LASE.

[2]  Olivier Guyon,et al.  Current status of the laser guide star adaptive optics system for Subaru Telescope , 2008, Astronomical Telescopes + Instrumentation.

[3]  R. Heinrichs,et al.  Observation of optical pumping of mesospheric sodium. , 1992, Optics letters.

[4]  Richard Dekany,et al.  Facilitizing the Palomar AO laser guide star system , 2008, Astronomical Telescopes + Instrumentation.

[5]  James R. Morris,et al.  Efficient excitation of a mesospheric sodium laser guide star by intermediate-duration pulses , 1994 .

[6]  Robert Q. Fugate,et al.  Analysis of measured photon returns from sodium beacons , 1998 .

[7]  Sean M. Adkins,et al.  20-W and 50-W solid-state sodium beacon guidestar laser systems for the Keck I and Gemini South telescopes , 2006, SPIE Astronomical Telescopes + Instrumentation.

[8]  Craig A. Denman,et al.  Photometry of a Sodium Laser Guide Star at the Starfire Optical Range , 2004 .

[9]  Allen K. Hankla,et al.  High-power solid-state sodium guidestar laser for the Gemini North Observatory , 2006, SPIE LASE.

[10]  Allen J. Tracy,et al.  A compact modular scalable versatile laser guidestar system architecture for 8-100 m telescopes , 2006, SPIE Astronomical Telescopes + Instrumentation.

[11]  Jack Drummond,et al.  Simulations of mesospheric sodium guidestar radiance , 2008, SPIE LASE.

[12]  Edward J. Kibblewhite,et al.  Calculation of returns from sodium beacons for different types of laser , 2008, Astronomical Telescopes + Instrumentation.

[13]  Matthew Cheselka,et al.  Implementation of the Chicago sum frequency laser at Palomar laser guide star test bed , 2004, SPIE Astronomical Telescopes + Instrumentation.

[14]  D. Bonaccini Calia,et al.  First light of the ESO laser guide star facility , 2006, SPIE Astronomical Telescopes + Instrumentation.

[15]  P W Milonni,et al.  Theory of mesospheric sodium fluorescence excited by pulse trains. , 1992, Applied optics.

[16]  Robert Q. Fugate,et al.  Characteristics of sodium guidestars created by the 50-watt FASOR and first closed-loop AO results at the Starfire Optical Range , 2006, SPIE Astronomical Telescopes + Instrumentation.

[17]  Robert Q. Fugate,et al.  Theory of continuous-wave excitation of the sodium beacon , 1999 .