Quantum imaging technologies

Over the past three decades, quantum mechanics has allowed the development of technologies that provide unconditionally secure communication. In parallel, the quantum nature of the transverse electromagnetic field has spawned the field of quantum imaging that encompasses technologies such as quantum ghost imaging and high-dimensional quantum key distribution (QKD). The emergence of such quantum technologies also highlights the need for the development of methods for characterizing the elusive quantum state itself. In this document, we describe new technologies that use the quantum properties of light for security. The first is a technique that extends the principles behind QKD to the field of imaging. By applying the polarization-based BB84 protocol to individual photons in an active imaging system, we obtained images that are secure against intercept-resend jamming attacks. The second technology presented in this article is based on an extension of quantum ghost imaging. We used a holographic filtering technique to build a quantum ghost image identification system that uses a few pairs of photons to identify an object from a set of known objects. The third technology addressed in this document is a high-dimensional QKD system that uses orbital-angular-momentum (OAM) modes of light for encoding. Moving to a high-dimensional state space in QKD allows one to impress more information on each photon, as well as introduce higher levels of security. We discuss the development of two OAM-QKD protocols based on the BB84 and Ekert QKD protocols. The fourth and final technology presented in this article is a relatively new technique called direct measurement that uses sequential weak and strong measurements to characterize a quantum state. We use this technique to characterize the quantum state of a photon with a dimensionality of d=27, and measure its rotation in the natural basis of OAM.

[1]  S. Massar,et al.  Bell inequalities for arbitrarily high-dimensional systems. , 2001, Physical review letters.

[2]  H. Weinfurter,et al.  Entanglement-based quantum communication over 144km , 2007 .

[3]  John C. Howell,et al.  Technical advantages for weak value amplification: When less is more , 2013, 1309.5011.

[4]  Bahaa E. A. Saleh,et al.  Entangled-photon Fourier optics , 2002 .

[5]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[6]  Robert W Boyd,et al.  Rapid generation of light beams carrying orbital angular momentum. , 2013, Optics express.

[7]  M. V. van Exter,et al.  Measurement of the spiral spectrum of entangled two-photon states. , 2010, Physical review letters.

[8]  Filippus S. Roux,et al.  Infinitesimal-propagation equation for decoherence of an orbital-angular-momentum-entangled biphoton state in atmospheric turbulence , 2011, 1102.5166.

[9]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[10]  Robert Fickler,et al.  Twisted light communication through turbulent air across Vienna , 2014 .

[11]  Robert W Boyd,et al.  Quantum ghost image identification with correlated photon pairs. , 2010, Physical review letters.

[12]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[13]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[14]  S. Barnett,et al.  Measuring the orbital angular momentum of a single photon. , 2002, Physical review letters.

[15]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[16]  Robert W. Boyd,et al.  Tomography of the quantum state of photons entangled in high dimensions , 2011 .

[17]  Derek Steinberg,et al.  Schrödinger's Cat , 2009, Compendium of Quantum Physics.

[18]  P. Knight,et al.  Entangled quantum systems and the Schmidt decomposition , 1995 .

[19]  Sandu Popescu,et al.  A time-symmetric formulation of quantum mechanics , 2010 .

[20]  R. Boyd,et al.  Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum. , 2009, Optics letters.

[21]  Abrams,et al.  Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit , 1999, Physical review letters.

[22]  C. G. Peterson,et al.  Long-distance quantum key distribution in optical fibre , 2006, quant-ph/0607177.

[23]  Enrique J. Galvez,et al.  Interference with correlated photons: Five quantum mechanics experiments for undergraduates , 2005 .

[24]  P. Dirac On the Analogy Between Classical and Quantum Mechanics , 1945 .

[25]  Anders Karlsson,et al.  Quantum key distribution using multilevel encoding: security analysis , 2001 .

[26]  Olof Bryngdahl,et al.  Geometrical transformations in optics , 1974 .

[27]  A R Dixon,et al.  Continuous operation of high bit rate quantum key distribution , 2010, 1005.4573.

[28]  A. Zeilinger,et al.  Generation and confirmation of a (100 × 100)-dimensional entangled quantum system , 2013, Proceedings of the National Academy of Sciences.

[29]  J. Lundeen,et al.  Procedure for direct measurement of general quantum states using weak measurement. , 2011, Physical review letters.

[30]  Robert W. Boyd,et al.  Quantum-secured imaging , 2012, 1212.2605.

[31]  Andrew G. White,et al.  Generation of optical phase singularities by computer-generated holograms. , 1992, Optics letters.

[32]  N. Lutkenhaus,et al.  Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack , 2001, quant-ph/0112147.

[33]  J. Goodman Introduction to Fourier optics , 1969 .

[34]  Guotian He,et al.  A high-speed image sensing technique with adjustable frame rate based on an ordinary CCD , 2008 .

[35]  A. Gatti,et al.  High-resolution ghost image and ghost diffraction experiments with thermal light. , 2005, Physical review letters.

[36]  Brian J. Smith,et al.  Two-photon wave mechanics , 2006 .

[37]  J. Davis,et al.  Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator. , 2000, Applied optics.

[38]  Ritchie,et al.  Realization of a measurement of a "weak value" , 1991, Physical review letters.

[39]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[40]  W. Munro,et al.  Qudit quantum-state tomography , 2002 .

[41]  Robert Fickler,et al.  Entangled singularity patterns of photons in Ince-Gauss modes , 2012, 1205.2514.

[42]  Robert W. Boyd,et al.  Compressive Object Tracking using Entangled Photons , 2013 .

[43]  Robert W. Boyd,et al.  Quantum Correlations in Optical Angle–Orbital Angular Momentum Variables , 2010, Science.

[44]  A. Gatti,et al.  Ghost imaging with thermal light: comparing entanglement and classical correlation. , 2003, Physical review letters.

[45]  Christopher Ferrie,et al.  Weak value amplification is suboptimal for estimation and detection. , 2013, Physical review letters.

[46]  T. Schmitt-Manderbach Long distance free-space quantum key distribution , 2007 .

[47]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[48]  R. Boyd,et al.  Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. , 2012, Optics Express.

[49]  Jussi Schultz,et al.  Weak versus approximate values in quantum state determination , 2011, 1108.3663.

[50]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[51]  Yi Zhao,et al.  Experimental quantum key distribution with decoy states. , 2006, Physical review letters.

[52]  F. Dickey,et al.  Theory of optimal beam splitting by phase gratings. I. One-dimensional gratings. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[53]  Xiongfeng Ma,et al.  Decoy state quantum key distribution. , 2004, Physical review letters.

[54]  Shih,et al.  Observation of two-photon "ghost" interference and diffraction. , 1995, Physical review letters.

[55]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[56]  S. Chaturvedi,et al.  Wigner-Weyl correspondence in quantum mechanics for continuous and discrete systems-a Dirac-inspired view , 2006 .

[57]  G M Morris,et al.  Image correlation at low light levels: a computer simulation. , 1984, Applied optics.

[58]  Saikat Guha,et al.  LADAR resolution improvement using receivers enhanced with squeezed-vacuum injection and phase-sensitive amplification , 2010 .

[59]  D. Gauthier,et al.  High-dimensional quantum cryptography with twisted light , 2014, 1402.7113.

[60]  S. Walborn,et al.  Transverse spatial entanglement in parametric down-conversion , 2007 .

[61]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[62]  Greg Gbur,et al.  Vortex beam propagation through atmospheric turbulence and topological charge conservation. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[63]  O. Katz,et al.  Compressive ghost imaging , 2009, 0905.0321.

[64]  Johannes Courtial,et al.  Fourier relationship between angular position and optical orbital angular momentum. , 2006, Optics express.

[65]  M Ritsch-Marte,et al.  Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces. , 2009, Optics express.

[66]  R. Boyd,et al.  Simulating thick atmospheric turbulence in the lab with application to orbital angular momentum communication , 2013, 1301.7454.

[67]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[68]  W. Wootters,et al.  Optimal state-determination by mutually unbiased measurements , 1989 .

[69]  L. A. González,et al.  Pixelated phase computer holograms for the accurate encoding of scalar complex fields. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[70]  G. D’Ariano,et al.  Quantum Tomography , 2003, quant-ph/0302028.

[71]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[72]  R Dändliker,et al.  Optimized kinoform structures for highly efficient fan-out elements. , 1992, Applied optics.

[73]  Keiji Sasaki,et al.  Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.

[74]  M. Lavery,et al.  Efficient sorting of orbital angular momentum states of light. , 2010, Physical review letters.

[75]  O. Katz,et al.  Ghost imaging with a single detector , 2008, 0812.2633.

[76]  Johannes Courtial,et al.  Refractive elements for the measurement of the orbital angular momentum of a single photon. , 2012, Optics express.

[77]  Peter John Rodrigo,et al.  High-speed phase modulation using the RPC method with a digital micromirror-array device. , 2006, Optics express.

[78]  S. N. Molotkov,et al.  Practical error-correction procedures in quantum cryptography , 2005 .

[79]  A. Jordan,et al.  Colloquium : Understanding quantum weak values: Basics and applications , 2013, 1305.7154.

[80]  G. Turin,et al.  An introduction to matched filters , 1960, IRE Trans. Inf. Theory.

[81]  J. Lundeen,et al.  Direct measurement of the quantum wavefunction , 2011, Nature.

[82]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[83]  Robert Fickler,et al.  Quantum Entanglement of High Angular Momenta , 2012, Science.

[84]  Paul G. Kwiat,et al.  Photonic State Tomography , 2005 .

[85]  R. A. Beth Mechanical Detection and Measurement of the Angular Momentum of Light , 1936 .

[86]  Robert W. Boyd,et al.  Discriminating orthogonal single-photon images , 2009 .

[87]  Robert W Boyd,et al.  Near-perfect sorting of orbital angular momentum and angular position states of light. , 2012, Optics express.

[88]  S. J. Roome,et al.  Digital radio frequency memory , 1990 .

[89]  Practical measurement of joint weak values and their connection to the annihilation operator , 2005, quant-ph/0501072.

[90]  Observation of entanglement witnesses for orbital angular momentum states , 2012 .

[91]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[92]  G. D’Ariano,et al.  Maximum-likelihood estimation of the density matrix , 1999, quant-ph/9909052.

[93]  H. Lo,et al.  Practical Decoy State for Quantum Key Distribution , 2005, quant-ph/0503005.

[94]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[95]  G. Brida,et al.  Experimental realization of sub-shot-noise quantum imaging , 2010 .

[96]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[97]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.

[98]  D. Bruß Optimal Eavesdropping in Quantum Cryptography with Six States , 1998, quant-ph/9805019.

[99]  Adetunmise C. Dada,et al.  Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities , 2011, 1104.5087.

[100]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[101]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[102]  R. Boyd,et al.  "Two-Photon" coincidence imaging with a classical source. , 2002, Physical review letters.

[103]  C. Paterson,et al.  Atmospheric turbulence and orbital angular momentum of single photons for optical communication. , 2005, Physical review letters.

[104]  Robert W Boyd,et al.  Efficient separation of the orbital angular momentum eigenstates of light , 2013, Nature Communications.

[105]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[106]  G W Burr,et al.  Thermal fixing of 10,000 Holograms in LiNbO3:Fe. , 1999, Applied optics.

[107]  H. Weinfurter,et al.  Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[108]  Raymond C. Dymale,et al.  Holographic generation of complex fields with spatial light modulators: application to quantum key distribution. , 2008, Applied optics.

[109]  Artur Ekert,et al.  Information Gain in Quantum Eavesdropping , 1994 .

[110]  Robert W. Boyd,et al.  Quantum lithography: status of the field , 2012, Quantum Inf. Process..

[111]  Barnett,et al.  Quantum theory of rotation angles. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[112]  Carlos H. Monken,et al.  Transfer of angular spectrum and image formation in spontaneous parametric down-conversion , 1998 .

[113]  Y. Shih,et al.  Turbulence-free ghost imaging , 2011 .

[114]  Gregory A. Howland,et al.  Quantum ghost imaging through turbulence , 2011, 1102.3358.

[115]  A. Vaziri,et al.  Experimental quantum cryptography with qutrits , 2005, quant-ph/0511163.

[116]  Robert W Boyd,et al.  Quantum and classical coincidence imaging. , 2004, Physical review letters.

[117]  Anton Zeilinger,et al.  Quantum imaging with undetected photons , 2014, Nature.

[118]  Shih,et al.  Optical imaging by means of two-photon quantum entanglement. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[119]  Jonathan Leach,et al.  Direct measurement of a 27-dimensional orbital-angular-momentum state vector , 2013, Nature Communications.

[120]  J. Ignacio Cirac,et al.  Toward quantum superposition of living organisms , 2009, 0909.1469.

[121]  Vaidman,et al.  How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. , 1988, Physical review letters.

[122]  Robert W. Boyd,et al.  Full characterization of polarization states of light via direct measurement , 2012, Nature Photonics.