Three-Dimensional Arrays of 1D MnO2 Nanocrystals for All-Solid-State Asymmetric Supercapacitors.

Reported is the synthesis of 3D hierarchical structures based on one-dimensional MnO2 nanobuilding blocks (nanorods, nanowires, and nanoneedles) by means of a facile and scalable coprecipitation method and their use as electrodes for the assembly of all-solid-state supercapacitors. Asymmetric devices were also assembled by using these nanostructured MnO2 materials as the positive electrode and reduced graphene oxide (rGO) as the negative electrode with a polymeric gel electrolyte. The asymmetric cells successfully extend the working voltage windows beyond 1.4 V and allowed for a maximum voltage of 1.8 V. An asymmetric device based on hierarchical nanoneedle-like MnO2 and rGO achieved a maximum specific capacitance of 99 F g-1 at a scan rate of 10 mV s-1 with a stable operational voltage of 1.8 V. This high value allowed for a large specific energy of 24.12 Wh kg-1 .

[1]  Rudolf Holze,et al.  Supercapacitors Based on Flexible Substrates: An Overview , 2014 .

[2]  Yongfeng Li,et al.  Synthesis of ultrathin mesoporous NiCo2O4 nanosheets on carbon fiber paper as integrated high-performance electrodes for supercapacitors , 2014 .

[3]  Y. Tong,et al.  Hierarchical NiCo2O4 nanosheets@hollow microrod arrays for high-performance asymmetric supercapacitors , 2014 .

[4]  Rujia Zou,et al.  Hierarchical mesoporous NiCo2O4@MnO2 core–shell nanowire arrays on nickel foam for aqueous asymmetric supercapacitors , 2014 .

[5]  R. Che,et al.  One‐Step Fabrication of Ultrathin Porous Nickel Hydroxide‐Manganese Dioxide Hybrid Nanosheets for Supercapacitor Electrodes with Excellent Capacitive Performance , 2013 .

[6]  C. Lokhande,et al.  Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors , 2013 .

[7]  Yehui Zhang,et al.  Self-assembled porous NiCo2O4 hetero-structure array for electrochemical capacitor , 2013 .

[8]  D. Dubal,et al.  Self-assembly of stacked layers of Mn3O4 nanosheets using a scalable chemical strategy for enhanced, flexible, electrochemical energy storage , 2013 .

[9]  C. Lokhande,et al.  Solution-based binder-free synthetic approach of RuO2 thin films for all solid state supercapacitors , 2013 .

[10]  L. Kong,et al.  Facile synthesis of NiMoO4·xH2O nanorods as a positive electrode material for supercapacitors , 2013 .

[11]  C. Lokhande,et al.  Temperature influence on morphological progress of Ni(OH)2 thin films and its subsequent effect on electrochemical supercapacitive properties , 2013 .

[12]  D. Dubal,et al.  All-solid-state flexible thin film supercapacitor based on Mn3O4 stacked nanosheets with gel electrolyte , 2013 .

[13]  Rudolf Holze,et al.  Demonstrating the Highest Supercapacitive Performance of Branched MnO2 Nanorods Grown Directly on Flexible Substrates using Controlled Chemistry at Ambient Temperature , 2013 .

[14]  C. Lokhande,et al.  Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors , 2013 .

[15]  Bin Liu,et al.  NiCo2O4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors , 2013 .

[16]  Zhenxing Zhang,et al.  Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. , 2013, ACS nano.

[17]  X. Lou,et al.  Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. , 2013, Chemical communications.

[18]  Yuping Wu,et al.  Core–Shell Structure of Polypyrrole Grown on V2O5 Nanoribbon as High Performance Anode Material for Supercapacitors , 2012 .

[19]  Yi Cui,et al.  Energy and environmental nanotechnology in conductive paper and textiles , 2012 .

[20]  Jianfang Wang,et al.  Graphene–MnO2 and graphene asymmetrical electrochemical capacitor with a high energy density in aqueous electrolyte , 2011 .

[21]  Aifang Yu,et al.  An All‐Solid‐State Flexible Micro‐supercapacitor on a Chip , 2011 .

[22]  Shihe Yang,et al.  Sequential crystallization of sea urchin-like bimetallic (Ni, Co) carbonate hydroxide and its morphology conserved conversion to porous NiCo2O4 spinel for pseudocapacitors , 2011 .

[23]  F. Meng,et al.  Sub‐Micrometer‐Thick All‐Solid‐State Supercapacitors with High Power and Energy Densities , 2011, Advanced materials.

[24]  F. Wei,et al.  Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density , 2011 .

[25]  Yi Cui,et al.  Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. , 2011, Nano letters.

[26]  C. Lokhande,et al.  Metal oxide thin film based supercapacitors , 2011 .

[27]  Wen‐Cui Li,et al.  Synthesis of Nanostructured Mesoporous Manganese Oxides with Three-Dimensional Frameworks and Their Application in Supercapacitors , 2011 .

[28]  Hao Jiang,et al.  Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors , 2011 .

[29]  Weifeng Wei,et al.  Manganese oxide-based materials as electrochemical supercapacitor electrodes. , 2011, Chemical Society reviews.

[30]  E. Higuchi,et al.  Preparation and characterization of Ni-based positive electrodes for use in aqueous electrochemical capacitors , 2010 .

[31]  R. Holze,et al.  A cheap asymmetric supercapacitor with high energy at high power: Activated carbon//K0.27MnO2·0.6H2O , 2010 .

[32]  Jun Chen,et al.  MnO2-Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media† , 2010 .

[33]  Jeng‐Kuei Chang,et al.  Pseudocapacitance of MnO2 originates from reversible insertion/desertion of thiocyanate anions studied using in situ X-ray absorption spectroscopy in ionic liquid electrolyte , 2010 .

[34]  Cunjiang Yu,et al.  Stretchable Supercapacitors Based on Buckled Single‐Walled Carbon‐Nanotube Macrofilms , 2009, Advanced materials.

[35]  R. Holze,et al.  A new cheap asymmetric aqueous supercapacitor: Activated carbon//NaMnO2 , 2009 .

[36]  Chao Yang,et al.  Facile synthesis of α-MnO2 nanostructures for supercapacitors , 2009 .

[37]  Candace K. Chan,et al.  Printable thin film supercapacitors using single-walled carbon nanotubes. , 2009, Nano letters.

[38]  Wencong Lu,et al.  Low-Temperature Synthesis of Monodisperse 3D Manganese Oxide Nanoflowers and Their Pseudocapacitance Properties , 2009 .

[39]  F. Favier,et al.  Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. , 2008, ACS applied materials & interfaces.

[40]  Feng Li,et al.  Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor , 2008 .

[41]  Chi-Chang Hu,et al.  Low-Temperature Hydrothermal Synthesis of Mn3O4 and MnOOH Single Crystals: Determinant Influence of Oxidants , 2008 .

[42]  S. Devaraj,et al.  Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties , 2008 .

[43]  Hiroyuki Nishide,et al.  Toward Flexible Batteries , 2008, Science.

[44]  Xiaogang Zhang,et al.  Electrochemical capacitance of NiO/Ru0.35V0.65O2 asymmetric electrochemical capacitor , 2007 .

[45]  Anbao Yuan,et al.  Supercapacitive behaviors and their temperature dependence of sol–gel synthesized nanostructured manganese dioxide in lithium hydroxide electrolyte , 2007 .

[46]  Mathieu Toupin,et al.  Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors , 2006 .

[47]  P. Sivaraman,et al.  Poly(3-methyl thiophene)-activated carbon hybrid supercapacitor based on gel polymer electrolyte , 2006 .

[48]  S. Pitchumani,et al.  Cross-linked polymer hydrogel electrolytes for electrochemical capacitors , 2006 .

[49]  D. Bélanger,et al.  Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors , 2006 .

[50]  Zan Gao,et al.  Hierarchical NiCo2O4@NiO core–shell hetero-structured nanowire arrays on carbon cloth for a high-performance flexible all-solid-state electrochemical capacitor , 2014 .