Specificity of the innate immune system and diversity of C-type lectin domain (CTLD) proteins in the nematode Caenorhabditis elegans.

The nematode Caenorhabditis elegans has become an important model for the study of innate immunity. Its immune system is based on several signaling cascades, including a Toll-like receptor, three mitogen-activated protein kinases (MAPK), one transforming growth factor-beta (TGF-beta), the insulin-like receptor (ILR), and the programmed cell death (PCD) pathway. Furthermore, it also involves C-type lectin domain- (CTLD) containing proteins as well as several classes of antimicrobial effectors such as lysozymes. Almost all components of the nematode immune system have homologs in other organisms, including humans, and are therefore likely of ancient evolutionary origin. At the same time, most of them are part of a general stress response, suggesting that they only provide unspecific defense. In the current article, we re-evaluate this suggestion and explore the level of specificity in C. elegans innate immunity, i.e. the nematode's ability to mount a distinct defense response towards different pathogens. We draw particular attention to the CTLD proteins, which are abundant in the nematode genome (278 genes) and many of which show a pathogen-specific response during infection. Specificity may also be achieved through the differential activation of antimicrobial genes, distinct functions of the immunity signaling cascades as well as signal integration across pathways. Taken together, our evaluation reveals high potential for immune specificity in C. elegans that may enhance the nematode's ability to fight off pathogens.

[1]  Nicola K. Petty,et al.  A generalized transducing phage (phiIF3) for the genomically sequenced Serratia marcescens strain Db11: a tool for functional genomics of an opportunistic human pathogen. , 2006, Microbiology.

[2]  E. Glass,et al.  Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[3]  B. Lemaître,et al.  The host defense of Drosophila melanogaster. , 2007, Annual review of immunology.

[4]  Donald L Riddle,et al.  Analysis of long-lived C. elegans daf-2 mutants using serial analysis of gene expression. , 2005, Genome research.

[5]  M. C. W. van den Berg,et al.  Sex-Dependent Resistance to the Pathogenic Fungus Cryptococcus neoformans , 2006, Genetics.

[6]  J. Hodgkin,et al.  Genome characterization, analysis of virulence and transformation of Microbacterium nematophilum, a coryneform pathogen of the nematode Caenorhabditis elegans. , 2006, FEMS microbiology letters.

[7]  F. Ausubel,et al.  Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[8]  H. Rohde,et al.  Staphylococcal Biofilm Exopolysaccharide Protects against Caenorhabditis elegans Immune Defenses , 2007, PLoS pathogens.

[9]  Leo X. Liu,et al.  Addresses: 1Laboratoire de Génétique et , 2022 .

[10]  S. Falkow,et al.  Caenorhabditis elegans: Plague bacteria biofilm blocks food intake , 2002, Nature.

[11]  M. Félix,et al.  Temporal Dynamics and Linkage Disequilibrium in Natural Caenorhabditis elegans Populations , 2007, Genetics.

[12]  M. Kondo,et al.  Extensive Diversity of Ig-Superfamily Proteins in the Immune System of Insects , 2005, Science.

[13]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[14]  Po-Huang Liang,et al.  Ligand specificities and structural requirements of two Tachypleus plasma lectins for bacterial trapping. , 2006, The Biochemical journal.

[15]  Valerie Reinke,et al.  p38 MAPK Regulates Expression of Immune Response Genes and Contributes to Longevity in C. elegans , 2006, PLoS genetics.

[16]  James H. Thomas,et al.  Analysis of Homologous Gene Clusters in Caenorhabditis elegans Reveals Striking Regional Cluster Domains , 2006, Genetics.

[17]  L. A. Vega,et al.  Oxidative Stress Enzymes Are Required for DAF-16-Mediated Immunity Due to Generation of Reactive Oxygen Species by Caenorhabditis elegans , 2007, Genetics.

[18]  F. Ausubel,et al.  A simple model host for identifying Gram-positive virulence factors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Thomas,et al.  Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[20]  B. Finlay,et al.  Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening , 2003, The EMBO journal.

[21]  D. Schwartz,et al.  Specificity and Complexity of the Caenorhabditis elegans Innate Immune Response , 2007, Molecular and Cellular Biology.

[22]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[23]  J. Ewbank,et al.  Diverse Bacteria Are Pathogens of Caenorhabditis elegans , 2002, Infection and Immunity.

[24]  Frederick M. Ausubel,et al.  A Conserved p38 MAP Kinase Pathway in Caenorhabditis elegans Innate Immunity , 2002, Science.

[25]  J. Kurtz,et al.  Innate defence: Evidence for memory in invertebrate immunity , 2003, Nature.

[26]  H. Taylor,et al.  AgDscam, a Hypervariable Immunoglobulin Domain-Containing Receptor of the Anopheles gambiae Innate Immune System , 2006, PLoS biology.

[27]  F. Ausubel,et al.  Staphylococcus aureus Virulence Factors Identified by Using a High-Throughput Caenorhabditis elegans-Killing Model , 2005, Infection and Immunity.

[28]  Frederick M. Ausubel,et al.  Molecular Mechanisms of Bacterial Virulence Elucidated Using a Pseudomonas aeruginosa– Caenorhabditis elegans Pathogenesis Model , 1999, Cell.

[29]  F. Ausubel,et al.  Caenorhabditis elegans Innate Immune Response Triggered by Salmonella enterica Requires Intact LPS and Is Mediated by a MAPK Signaling Pathway , 2003, Current Biology.

[30]  Gary Ruvkun,et al.  Long-Lived C. elegans daf-2 Mutants Are Resistant to Bacterial Pathogens , 2003, Science.

[31]  Jonathan Hodgkin,et al.  Multiple Genes Affect Sensitivity of Caenorhabditis elegans to the Bacterial Pathogen Microbacterium nematophilum , 2005, Genetics.

[32]  N. Gaddis,et al.  GATA Transcription Factor Required for Immunity to Bacterial and Fungal Pathogens , 2006, PloS one.

[33]  J. Griffitts,et al.  Bt Toxin Resistance from Loss of a Putative Carbohydrate-Modifying Enzyme , 2001, Science.

[34]  Creg Darby,et al.  Caenorhabditis elegans Mutants Resistant to Attachment of Yersinia Biofilms , 2007, Genetics.

[35]  Nektarios Tavernarakis,et al.  Genome-wide investigation reveals pathogen-specific and shared signatures in the response of Caenorhabditis elegans to infection , 2007, Genome Biology.

[36]  N. Colegrave,et al.  Maternal Transfer of Strain-Specific Immunity in an Invertebrate , 2003, Current Biology.

[37]  Sean R. Eddy,et al.  Profile hidden Markov models , 1998, Bioinform..

[38]  A. Dell,et al.  Glycolipids as Receptors for Bacillus thuringiensis Crystal Toxin , 2005, Science.

[39]  H. Schulenburg,et al.  Diversity and specificity in the interaction between Caenorhabditis elegans and the pathogen Serratia marcescens , 2004, BMC Evolutionary Biology.

[40]  Rita Van Driessche,et al.  Germination of Bacillus thuringiensis spores in bacteriophagous nematodes (Nematoda: Rhabditida). , 1995, Journal of invertebrate pathology.

[41]  B. Wren,et al.  A Caenorhabditis elegans model of Yersinia infection: biofilm formation on a biotic surface. , 2003, Microbiology.

[42]  Guigen Li,et al.  Caenorhabditis elegans Senses Bacterial Autoinducers , 2006, Applied and Environmental Microbiology.

[43]  J. Heitman,et al.  Eca1, a Sarcoplasmic/Endoplasmic Reticulum Ca2+-ATPase, Is Involved in Stress Tolerance and Virulence in Cryptococcus neoformans , 2007, Infection and Immunity.

[44]  J. Hodgkin,et al.  Natural variation and copulatory plug formation in Caenorhabditis elegans. , 1997, Genetics.

[45]  F. Ausubel,et al.  Caenorhabditis elegans as a Model Host for Staphylococcus aureus Pathogenesis , 2003, Infection and Immunity.

[46]  Creg Darby,et al.  A Movable Surface: Formation of Yersinia sp. Biofilms on Motile Caenorhabditis elegans , 2004, Journal of bacteriology.

[47]  Varsha Singh,et al.  Heat-shock transcription factor (HSF)-1 pathway required for Caenorhabditis elegans immunity , 2006, Proceedings of the National Academy of Sciences.

[48]  R. Titball,et al.  The pathogen Pseudomonas aeruginosa negatively affects the attraction response of the nematode Caenorhabditis elegans to bacteria. , 2006, Microbial pathogenesis.

[49]  C. Kurz,et al.  Caenorhabditis elegans is a model host for Salmonella typhimurium , 2000, Current Biology.

[50]  A. Dell,et al.  Resistance to Bacillus thuringiensis Toxin in Caenorhabditis elegans from Loss of Fucose* , 2006, Journal of Biological Chemistry.

[51]  R. Frothingham,et al.  Yersinia pestis kills Caenorhabditis elegans by a biofilm‐independent process that involves novel virulence factors , 2005, EMBO reports.

[52]  K. Drickamer,et al.  Lectin-like proteins in model organisms: implications for evolution of carbohydrate-binding activity. , 2001, Glycobiology.

[53]  Joachim Kurtz,et al.  Alternative adaptive immunity in invertebrates. , 2006, Trends in immunology.

[54]  M. Ronen,et al.  A conserved role for a GATA transcription factor in regulating epithelial innate immune responses , 2006, Proceedings of the National Academy of Sciences.

[55]  L. Gallagher,et al.  Pseudomonas aeruginosa PAO1 KillsCaenorhabditis elegans by Cyanide Poisoning , 2001, Journal of bacteriology.

[56]  M. Shapira,et al.  Caenorhabditis elegans pgp-5 is involved in resistance to bacterial infection and heavy metal and its regulation requires TIR-1 and a p38 map kinase cascade. , 2007, Biochemical and biophysical research communications.

[57]  S. Granjeaud,et al.  Inducible Antibacterial Defense System in C. elegans , 2002, Current Biology.

[58]  J. Hodgkin,et al.  The ERK MAP Kinase Cascade Mediates Tail Swelling and a Protective Response to Rectal Infection in C. elegans , 2004, Current Biology.

[59]  J. Heitman,et al.  Cryptococcus neoformans Kin1 protein kinase homologue, identified through a Caenorhabditis elegans screen, promotes virulence in mammals , 2004, Molecular microbiology.

[60]  J. Gready,et al.  The C‐type lectin‐like domain superfamily , 2005, The FEBS journal.

[61]  J. Heitman,et al.  Cryptococcus neoformans Gene Involved in Mammalian Pathogenesis Identified by a Caenorhabditis elegans Progeny-Based Approach , 2005, Infection and Immunity.

[62]  M. Leippe,et al.  Antimicrobial and cytolytic polypeptides of amoeboid protozoa--effector molecules of primitive phagocytes. , 1999, Developmental and comparative immunology.

[63]  A. Coomans,et al.  Effect of a nematicidal Bacillus thuringiensis strain on free- living nematodes : 3. Characterization of the intoxication process , 1996 .

[64]  F. Ausubel,et al.  Programmed cell death mediated by ced-3 and ced-4 protects Caenorhabditis elegans from Salmonella typhimurium-mediated killing , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[65]  A. Coomans,et al.  Effect of nematicidal Bacillus thuringiensis strains on free-living nematodes .1. Light microscopic observations, species and biological stage specificity and identification of resistant mutants of Caenorhabditis elegans , 1996 .

[66]  T. Hennet,et al.  Resistance to a Bacterial Toxin Is Mediated by Removal of a Conserved Glycosylation Pathway Required for Toxin-Host Interactions* , 2003, Journal of Biological Chemistry.

[67]  Frederick M Ausubel,et al.  Evolutionary perspectives on innate immunity from the study of Caenorhabditis elegans. , 2005, Current opinion in immunology.

[68]  H. Schulenburg,et al.  Natural variation in the response of Caenorhabditis elegans towards Bacillus thuringiensis , 2004, Parasitology.

[69]  H. Jansson,et al.  Differential Adhesion and Infection of Nematodes by the Endoparasitic Fungus Meria coniospora (Deuteromycetes) , 1985, Applied and environmental microbiology.

[70]  P. Kuwabara,et al.  A novel bacterial pathogen, Microbacterium nematophilum, induces morphological change in the nematode C. elegans , 2000, Current Biology.

[71]  F. Ausubel Are innate immune signaling pathways in plants and animals conserved? , 2005, Nature Immunology.

[72]  J. Heitman,et al.  Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[73]  J. Hodgkin,et al.  Loss of srf-3-encoded Nucleotide Sugar Transporter Activity in Caenorhabditis elegans Alters Surface Antigenicity and Prevents Bacterial Adherence* , 2004, Journal of Biological Chemistry.

[74]  K. Drickamer,et al.  C-Type lectin-like domains in Caenorhabditis elegans: predictions from the complete genome sequence. , 1999, Glycobiology.

[75]  Y. Kohara,et al.  Identification of transforming growth factor-beta- regulated genes in caenorhabditis elegans by differential hybridization of arrayed cDNAs. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[76]  J. Ewbank Signaling in the immune response. , 2006, WormBook : the online review of C. elegans biology.

[77]  J. Corbeil,et al.  Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[78]  F. Ausubel,et al.  Caenorhabditis elegans-Based Screen Identifies Salmonella Virulence Factors Required for Conserved Host-Pathogen Interactions , 2004, Current Biology.

[79]  H. Schulenburg,et al.  Evolutionary history of Caenorhabditis elegans inferred from microsatellites: evidence for spatial and temporal genetic differentiation and the occurrence of outbreeding. , 2004, Molecular biology and evolution.

[80]  Richard Mott,et al.  Genomic clusters, putative pathogen recognition molecules, and antimicrobial genes are induced by infection of C. elegans with M. nematophilum. , 2006, Genome research.

[81]  Cori Bargmann,et al.  Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans , 2003, Nature.

[82]  J. Hodgkin,et al.  Mos1 Mutagenesis Reveals a Diversity of Mechanisms Affecting Response of Caenorhabditis elegans to the Bacterial Pathogen Microbacterium nematophilum , 2007, Genetics.

[83]  Protein changes associated with the infection of the nematode Caenorhabditis elegans by the nematophagous fungus Drechmeria coniospora , 1989 .

[84]  F. Ausubel,et al.  Salmonella typhimurium proliferates and establishes a persistent infection in the intestine of Caenorhabditis elegans , 2000, Current Biology.

[85]  L. Marroquin,et al.  Marroquin LD, Elyassnia D, Griffitts JS, Feitelson JS, Aroian RV.. Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics 155: 1693-1699 , 2000 .

[86]  Naoki Hisamoto,et al.  Integration of Caenorhabditis elegans MAPK pathways mediating immunity and stress resistance by MEK-1 MAPK kinase and VHP-1 MAPK phosphatase. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[87]  H. Schulenburg,et al.  The effect of Photorhabdus luminescens (Enterobacteriaceae) on the survival, development, reproduction and behaviour of Caenorhabditis elegans (Nematoda: Rhabditidae). , 2007, Environmental microbiology.

[88]  H. Schulenburg,et al.  The genetics of pathogen avoidance in Caenorhabditis elegans , 2007, Molecular microbiology.

[89]  C. Figdor,et al.  How C‐type lectins detect pathogens , 2005, Cellular microbiology.

[90]  Morgan C. Giddings,et al.  Tracking the evolution of alternatively spliced exons within the Dscam family , 2006, BMC Evolutionary Biology.

[91]  Leon Avery,et al.  Dietary choice behavior in Caenorhabditis elegans , 2006, Journal of Experimental Biology.

[92]  S. Iwanaga,et al.  Recent advances in the innate immunity of invertebrate animals. , 2005, Journal of biochemistry and molecular biology.

[93]  H. Jansson Adhesion of Conidia of Drechmeria coniospora to Caenorhabditis elegans Wild Type and Mutants. , 1994, Journal of nematology.

[94]  F. Ausubel,et al.  Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[95]  H. Schulenburg,et al.  How do invertebrates generate a highly specific innate immune response? , 2007, Molecular immunology.

[96]  Cornelia I. Bargmann,et al.  Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans , 2005, Nature.

[97]  Cynthie Wong,et al.  Bacillus thuringiensis crystal proteins that target nematodes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[98]  Jennifer L. Tenor,et al.  A conserved Toll‐like receptor is required for Caenorhabditis elegans innate immunity , 2008, EMBO reports.

[99]  L. Marroquin,et al.  Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. , 2000, Genetics.

[100]  F. Ausubel,et al.  Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[101]  Frederick M. Ausubel,et al.  Virulence Effect of Enterococcus faecalis Protease Genes and the Quorum-Sensing Locus fsr in Caenorhabditis elegans and Mice , 2002, Infection and Immunity.

[102]  J. Griffitts,et al.  Pore worms: using Caenorhabditis elegans to study how bacterial toxins interact with their target host. , 2004, International journal of medical microbiology : IJMM.

[103]  D. Hultmark,et al.  Invertebrate immunity and the limits of mechanistic immunology , 2005, Nature Immunology.

[104]  Jonathan Hodgkin,et al.  Responses to infection and possible recognition strategies in the innate immune system of Caenorhabditis elegans. , 2004, Molecular immunology.

[105]  G. Borgonie,et al.  Nematocidal activity of bacillus-thuringiensis isolates , 1995 .

[106]  Jonathan Hodgkin,et al.  Caenorhabditis elegans as a model for innate immunity to pathogens , 2005, Cellular microbiology.

[107]  Cori Bargmann,et al.  Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans , 2007, Proceedings of the National Academy of Sciences.

[108]  Polly Matzinger,et al.  Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses , 2004, Nature Reviews Immunology.

[109]  A. Coomans,et al.  Effect of nematicidal Bacillus thuringiensis strains on free-living nematodes. 2. Ultrastructural analysis of the intoxication process in Caenorhabditis elegans , 1996 .

[110]  J. Ewbank,et al.  Immunity in Caenorhabditis elegans. , 2004, Current opinion in immunology.

[111]  Joachim Kurtz,et al.  Specific memory within innate immune systems. , 2005, Trends in immunology.

[112]  N. Sharon,et al.  Lectins: Carbohydrate-Specific Proteins That Mediate Cellular Recognition. , 1998, Chemical reviews.

[113]  Li Li,et al.  Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial , 2006, Genome Biology.

[114]  Hinrich Schulenburg,et al.  Evolution of the innate immune system: the worm perspective , 2004, Immunological reviews.

[115]  S. Calderwood,et al.  Virulence of Staphylococcus aureus Small Colony Variants in the Caenorhabditis elegans Infection Model , 2006, Infection and Immunity.

[116]  Marie-Anne Félix,et al.  High Local Genetic Diversity and Low Outcrossing Rate in Caenorhabditis elegans Natural Populations , 2005, Current Biology.

[117]  James H. Thomas Adaptive evolution in two large families of ubiquitin-ligase adapters in nematodes and plants. , 2006, Genome research.

[118]  Y. Kohara,et al.  TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM , 2004, Nature Immunology.

[119]  H. Schulenburg,et al.  The role of Caenorhabditis elegans insulin‐like signaling in the behavioral avoidance of pathogenic Bacillus thuringiensis , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[120]  J. Vivanco,et al.  Down Regulation of Virulence Factors of Pseudomonas aeruginosa by Salicylic Acid Attenuates Its Virulence on Arabidopsis thaliana and Caenorhabditis elegans , 2005, Infection and Immunity.