A genetically encoded GRAB sensor for measuring serotonin dynamics in vivo

Serotonin (5-HT) is a phylogenetically conserved monoamine neurotransmitter modulating a variety of processes in the brain. To directly visualize the dynamics of 5-HT, we developed a genetically encoded GPCR-Activation-Based 5-HT (GRAB5-HT) sensor with high sensitivity, selectivity, and spatiotemporal resolution. GRAB5-HT, detected 5-HT release in multiple physiological and pathological conditions in both flies and mice, and thus provides new insights into the dynamics and mechanisms of 5-HT signaling.

[1]  Qingming Luo,et al.  Single-cell transcriptomes and whole-brain projections of serotonin neurons in the mouse dorsal and median raphe nuclei , 2019, eLife.

[2]  D. Prober,et al.  The Serotonergic Raphe Promote Sleep in Zebrafish and Mice , 2019, Neuron.

[3]  Dayu,et al.  A genetically encoded fluorescent sensor for rapid and 1 specific in vivo detection of norepinephrine 2 3 , 2018 .

[4]  John Huguenard,et al.  Anatomically Defined and Functionally Distinct Dorsal Raphe Serotonin Sub-systems , 2018, Cell.

[5]  B. J. Venton,et al.  Electrochemical Measurements of Acetylcholine-Stimulated Dopamine Release in Adult Drosophila melanogaster Brains. , 2018, Analytical chemistry.

[6]  Li I. Zhang,et al.  ED SUM: Signaling by the neurotransmitter acetylcholine is monitored in cells and animals with a sensitive reporter. , 2018, Nature Biotechnology.

[7]  Anatol C. Kreitzer,et al.  A Genetically Encoded Fluorescent Sensor Enables Rapid and Specific Detection of Dopamine in Flies, Fish, and Mice , 2018, Cell.

[8]  A. Nimmerjahn,et al.  Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors , 2018, Science.

[9]  A. Kreitzer,et al.  A genetically-encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice , 2018, bioRxiv.

[10]  N. Lambert,et al.  Mini G protein probes for active G protein–coupled receptors (GPCRs) in live cells , 2018, The Journal of Biological Chemistry.

[11]  David E. Gloriam,et al.  5-HT2C Receptor Structures Reveal the Structural Basis of GPCR Polypharmacology , 2018, Cell.

[12]  A. Gordus,et al.  Sensitive red protein calcium indicators for imaging neural activity , 2016, bioRxiv.

[13]  Qingchun Guo,et al.  Serotonin neurons in the dorsal raphe nucleus encode reward signals , 2016, Nature Communications.

[14]  Maria F. Sassano,et al.  PRESTO-TANGO: an open-source resource for interrogation of the druggable human GPCR-ome , 2015, Nature Structural &Molecular Biology.

[15]  C. Pechmann,et al.  Policy and Research Related to Consumer Rebates: A Comprehensive Review , 2013 .

[16]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[17]  M. Chachisvilis,et al.  Mechanical Stress Stimulates Conformational Changes in 5-Hydroxytryptamine Receptor 1B in Bone Cells , 2012 .

[18]  Gerald M Rubin,et al.  Using translational enhancers to increase transgene expression in Drosophila , 2012, Proceedings of the National Academy of Sciences.

[19]  A. Bradley,et al.  Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells , 2011, Nature.

[20]  Tzumin Lee,et al.  Serotonin–mushroom body circuit modulating the formation of anesthesia-resistant memory in Drosophila , 2011, Proceedings of the National Academy of Sciences.

[21]  D. Murphy,et al.  Effects of MDMA on Extracellular Dopamine and Serotonin Levels in Mice Lacking Dopamine and/or Serotonin Transporters , 2011, Current neuropharmacology.

[22]  D. G. Gibson,et al.  Enzymatic assembly of DNA molecules up to several hundred kilobases , 2009, Nature Methods.

[23]  H. Sondermann,et al.  Structural basis for calcium sensing by GCaMP2. , 2008, Structure.

[24]  G. Barnea,et al.  The genetic design of signaling cascades to record receptor activation , 2008, Proceedings of the National Academy of Sciences.

[25]  Ronald L. Davis,et al.  Drosophila DPM Neurons Form a Delayed and Branch-Specific Memory Trace after Olfactory Classical Conditioning , 2005, Cell.

[26]  S. Waddell,et al.  Diverse Odor-Conditioned Memories Require Uniquely Timed Dorsal Paired Medial Neuron Output , 2004, Neuron.

[27]  M. Vaswani,et al.  Role of selective serotonin reuptake inhibitors in psychiatric disorders: a comprehensive review , 2003, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[28]  W. Quinn,et al.  The amnesiac Gene Product Is Expressed in Two Neurons in the Drosophila Brain that Are Critical for Memory , 2000, Cell.

[29]  F. Vollenweider,et al.  Psychological and Physiological Effects of MDMA (“Ecstasy”) after Pretreatment with the 5-HT2 Antagonist Ketanserin in Healthy Humans , 2000, Neuropsychopharmacology.

[30]  R. Wightman,et al.  Release and Uptake Rates of 5‐Hydroxytryptamine in the Dorsal Raphe and Substantia Nigra Reticulata of the Rat Brain , 1998, Journal of neurochemistry.

[31]  B. Bjorvatn,et al.  On-line detection of extracellular levels of serotonin in dorsal raphe nucleus and frontal cortex over the sleep/wake cycle in the freely moving rat , 1998, Neuroscience.

[32]  K. Lesch,et al.  Association of Anxiety-Related Traits with a Polymorphism in the Serotonin Transporter Gene Regulatory Region , 1996, Science.

[33]  G. Rudnick,et al.  The molecular mechanism of "ecstasy" [3,4-methylenedioxy-methamphetamine (MDMA)]: serotonin transporters are targets for MDMA-induced serotonin release. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[34]  R. Fuller Uptake inhibitors increase extracellular serotonin concentration measured by brain microdialysis. , 1994, Life sciences.