Recent numerical methods - A challenge for efficient visualization

Abstract Together with a rapid development of computer hardware, sophisticated, efficient numerical algorithms allow simulation computations of complex physical phenomena. Methods, such as finite volume, multigrid finite element schemes, sparse grid, wavelet approaches, and particle methods or gridless discretizations, all carry data structures, which are tailored to the respective method. These data structures reflect the decomposition of the function space as well as the decomposition in physical space. In this paper an efficient multiresolutional visualization approach is described, which tries to reuse as much of the hierarchical structure in the numerical data as possible. The duality between grid and function space, both carrying an intrinsic hierarchical structure, is explained as the key issue of the approach. Furthermore, a general method of local error measurement is discussed, which allows a reliable representation of the desired multiresolutional data. Finally, the method of spatial, hierarchical subdivision combined with the procedural recovery of the local function spaces is presented to address fairly general numerical data. This leads to a visualization beyond prescribed data formats. Examples from various numerical methods and different data bases underline the applicability of the proposed concept.

[1]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[2]  Shigeru Muraki,et al.  Volume data and wavelet transforms , 1993, IEEE Computer Graphics and Applications.

[3]  F. Bornemann,et al.  Adaptive multivlevel methods in three space dimensions , 1993 .

[4]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[5]  Martin Rumpf,et al.  Adaptive Projection Operators in Multiresolution Scientific Visualization , 1998, IEEE Trans. Vis. Comput. Graph..

[6]  Martin Rumpf,et al.  Interactive visualization of particle systems , 1998, Proceedings. Computer Graphics International (Cat. No.98EX149).

[7]  D. Kröner Numerical Schemes for Conservation Laws , 1997 .

[8]  Thomas Ertl,et al.  The multilevel finite element method for adaptive mesh optimization and visualization of volume data , 1997 .

[9]  Pat Hanrahan,et al.  Hierarchical splatting: a progressive refinement algorithm for volume rendering , 1991, SIGGRAPH.

[10]  Martin Rumpf,et al.  Efficient Visualization of Large - Scale Data on Hierarchical Meshes , 1997, Visualization in Scientific Computing.

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[13]  Kevin P. McAuliffe,et al.  An architecture for a scientific visualization system , 1992, Proceedings Visualization '92.

[14]  Martin Rumpf,et al.  Adaptive Projection Operators in Multiresolution Scientific Visualization , 1998, IEEE Trans. Vis. Comput. Graph..

[15]  D. Scott Dyer,et al.  A dataflow toolkit for visualization , 1990, IEEE Computer Graphics and Applications.

[16]  Bernd Hamann,et al.  A data reduction scheme for triangulated surfaces , 1994, Comput. Aided Geom. Des..

[17]  David Salesin,et al.  Interactive multiresolution surface viewing , 1996, SIGGRAPH.

[18]  Philippe G. Ciarlet,et al.  Handbook of Numerical Analysis , 1976 .

[19]  Michael Griebel Eine Kombinationstechnik für die Lösung von Dünn-Gitter-Problemen auf Multiprozessor-Maschinen , 1993 .

[20]  Reinhard Klein,et al.  Mesh reduction with error control , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[21]  Leila De Floriani,et al.  Multiresolution modeling and visualization of volume data based on simplicial complexes , 1994, VVS '94.

[22]  Christoph Schwab,et al.  The p and hp versions of the finite element method for problems with boundary layers , 1996, Math. Comput..

[23]  Martin Rumpf,et al.  Efficient Visualization of Data on Sparse Grids , 1997, VisMath.

[24]  Pieter W. Hemker On the structure of an adaptive multi-level algorithm , 1980, BIT Comput. Sci. Sect..

[25]  Peter Schröder,et al.  Spherical wavelets: efficiently representing functions on the sphere , 1995, SIGGRAPH.

[26]  Bruce Lucas,et al.  A data model for scientific visualization with provisions for regular and irregular grids , 1991, Proceeding Visualization '91.

[27]  Michela Spagnuolo,et al.  High Fidelity Digital Terrain Modelling for the Reconstruction of the Antarctic Sea Floor , 1996, Comput. Animat. Virtual Worlds.

[28]  C. H. Cooke,et al.  Data compression based on the cubic B-spline wavelet with uniform two-scale relation , 1996 .

[29]  Jane Wilhelms,et al.  Octrees for faster isosurface generation , 1990, SIGGRAPH 1990.

[30]  M. Gross,et al.  Fast multiresolution surface meshing , 1995, Proceedings Visualization '95.

[31]  Greg Turk,et al.  Re-tiling polygonal surfaces , 1992, SIGGRAPH.

[32]  R. Stenberg,et al.  Mixed $hp$ finite element methods for problems in elasticity and Stokes flow , 1996 .

[33]  William E. Lorensen,et al.  Decimation of triangle meshes , 1992, SIGGRAPH.

[34]  Ulrich Lang,et al.  Integration of visualization and scientific calculation in a software system , 1991, Proceeding Visualization '91.

[35]  Kunibert G. Siebert,et al.  Functions Defining Arbitrary Meshes – A Flexible Interface between Numerical Data and Visualization Routines , 1996, Comput. Graph. Forum.

[36]  M. Falcone,et al.  Numerical schemes for conservation laws via Hamilton-Jacobi equations , 1995 .

[37]  Michela Spagnuolo,et al.  High Fidelity Digital Terrain Modelling for the Reconstruction of the Antarctic Sea Floor , 1996 .

[38]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[39]  Jochen Fröhlich,et al.  An Adaptive Wavelet-Vaguelette Algorithm for the Solution of PDEs , 1997 .

[40]  David H. Laidlaw,et al.  The application visualization system: a computational environment for scientific visualization , 1989, IEEE Computer Graphics and Applications.

[41]  Roni Yagel,et al.  Octree-based decimation of marching cubes surfaces , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[42]  Kunibert G. Siebert,et al.  On a Unified Visualization Approach for Data from Advanced Numerical Methods , 1995, Visualization in Scientific Computing.