Representation of Perceptual Color Space in Macaque Posterior Inferior Temporal Cortex (the V4 Complex)

Abstract The lateral geniculate nucleus is thought to represent color using two populations of cone-opponent neurons [L vs M; S vs (L + M)], which establish the cardinal directions in color space (reddish vs cyan; lavender vs lime). How is this representation transformed to bring about color perception? Prior work implicates populations of glob cells in posterior inferior temporal cortex (PIT; the V4 complex), but the correspondence between the neural representation of color in PIT/V4 complex and the organization of perceptual color space is unclear. We compared color-tuning data for populations of glob cells and interglob cells to predictions obtained using models that varied in the color-tuning narrowness of the cells, and the color preference distribution across the populations. Glob cells were best accounted for by simulated neurons that have nonlinear (narrow) tuning and, as a population, represent a color space designed to be perceptually uniform (CIELUV). Multidimensional scaling and representational similarity analyses showed that the color space representations in both glob and interglob populations were correlated with the organization of CIELUV space, but glob cells showed a stronger correlation. Hue could be classified invariant to luminance with high accuracy given glob responses and above-chance accuracy given interglob responses. Luminance could be read out invariant to changes in hue in both populations, but interglob cells tended to prefer stimuli having luminance contrast, regardless of hue, whereas glob cells typically retained hue tuning as luminance contrast was modulated. The combined luminance/hue sensitivity of glob cells is predicted for neurons that can distinguish two colors of the same hue at different luminance levels (orange/brown).

[1]  Bevil R. Conway,et al.  Spatial and Temporal Properties of Cone Signals in Alert Macaque Primary Visual Cortex , 2006, The Journal of Neuroscience.

[2]  Justin M. Ales,et al.  The steady-state visual evoked potential in vision research: A review. , 2015, Journal of vision.

[3]  J. Davidoff,et al.  Colour categories in a stone-age tribe , 1999, Nature.

[4]  Qasim Zaidi,et al.  Salience of unique hues and implications for color theory. , 2015, Journal of vision.

[5]  S Yamane,et al.  Color selectivity of neurons in the inferior temporal cortex of the awake macaque monkey , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  Bevil R. Conway,et al.  Color-Biased Regions of the Ventral Visual Pathway Lie between Face- and Place-Selective Regions in Humans, as in Macaques , 2016, The Journal of Neuroscience.

[7]  DH Hubel,et al.  Segregation of form, color, and stereopsis in primate area 18 , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  Leslie G. Ungerleider,et al.  Contour, color and shape analysis beyond the striate cortex , 1985, Vision Research.

[9]  H Sompolinsky,et al.  Simple models for reading neuronal population codes. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[10]  M. Sommer,et al.  Neuronal correlates of visual time perception at brief timescales , 2013, Proceedings of the National Academy of Sciences.

[11]  Tomaso Poggio,et al.  Fast Readout of Object Identity from Macaque Inferior Temporal Cortex , 2005, Science.

[12]  Bevil R. Conway,et al.  Specialized Color Modules in Macaque Extrastriate Cortex , 2007, Neuron.

[13]  Delwin T. Lindsey,et al.  Hunter-Gatherer Color Naming Provides New Insight into the Evolution of Color Terms , 2015, Current Biology.

[14]  Gouki Okazawa,et al.  Effects of Luminance Contrast on the Color Selectivity of Neurons in the Macaque Area V4 and Inferior Temporal Cortex , 2014, The Journal of Neuroscience.

[15]  Naokazu Goda,et al.  Distribution of colour‐selective activity in the monkey inferior temporal cortex revealed by functional magnetic resonance imaging , 2009, The European journal of neuroscience.

[16]  Michael A Webster,et al.  Variations in normal color vision. III. Unique hues in Indian and United States observers. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  Bevil R. Conway,et al.  Color signals through dorsal and ventral visual pathways , 2014, Visual Neuroscience.

[18]  Karen R Dobkins,et al.  The face inversion effect in infants is driven by high, and not low, spatial frequencies. , 2014, Journal of vision.

[19]  J. Baizer Receptive field properties of V3 neurons in monkey. , 1982, Investigative ophthalmology & visual science.

[20]  M. Melgosa,et al.  Uniformity of some recent color metrics tested with an accurate color-difference tolerance dataset. , 1994, Applied optics.

[21]  Bevil R. Conway,et al.  Color tuning in alert macaque V1 assessed with fMRI and single-unit recording shows a bias toward daylight colors. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[22]  B. Saunders,et al.  Are there nontrivial constraints on colour categorization? , 1997, Behavioral and Brain Sciences.

[23]  A. Roe,et al.  Functional organization for color and orientation in macaque V4 , 2010, Nature Neuroscience.

[24]  D. Jameson,et al.  Opponent processes as a model of neural organization. , 1974, The American psychologist.

[25]  Yifeng Zhou,et al.  Limited transfer of long-term motion perceptual learning with double training. , 2015, Journal of vision.

[26]  D L MacAdam Redetermination of colors for uniform scales. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[27]  Karl R. Gegenfurtner,et al.  Higher Order Color Mechanisms for Image Segmentation , 2007, BVAI.

[28]  Youping Xiao,et al.  Organization of hue selectivity in macaque V2 thin stripes. , 2009, Journal of neurophysiology.

[29]  Rhea T. Eskew,et al.  Higher order color mechanisms: A critical review , 2009, Vision Research.

[30]  P. Lennie,et al.  Functional Asymmetries in Visual Pathways Carrying S-Cone Signals in Macaque , 2008, The Journal of Neuroscience.

[31]  Olivier P. Faugeras,et al.  The Retinotopic Organization of Primate Dorsal V4 and Surrounding Areas: A Functional Magnetic Resonance Imaging Study in Awake Monkeys , 2003, The Journal of Neuroscience.

[32]  P. Kay Basic Color Terms: Their Universality and Evolution , 1969 .

[33]  K. Shapiro,et al.  The contingent negative variation (CNV) event-related potential (ERP) predicts the attentional blink , 2008 .

[34]  R. M. Boynton,et al.  Chromaticity diagram showing cone excitation by stimuli of equal luminance. , 1979, Journal of the Optical Society of America.

[35]  Bevil R. Conway,et al.  Cerebral Cortex Advance Access published December 28, 2005 Color Architecture in Alert Macaque Cortex , 2022 .

[36]  François Cinotti,et al.  What determines the relationship between color naming, unique hues, and sensory singularities: Illuminations, surfaces, or photoreceptors? , 2015, Journal of vision.

[37]  D. V. van Essen,et al.  Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  M. Luo,et al.  Uniform colour spaces based on CIECAM02 colour appearance model , 2006 .

[39]  Bevil R. Conway,et al.  Evolution of neural computations: Mantis shrimp and human color decoding , 2014, i-Perception.

[40]  S. Zeki The representation of colours in the cerebral cortex , 1980, Nature.

[41]  Bevil R. Conway,et al.  Striking individual differences in color perception uncovered by ‘the dress’ photograph , 2015, Current Biology.

[42]  P. Kay,et al.  Basic Color Terms: Their Universality and Evolution , 1973 .

[43]  G. Horwitz,et al.  Nonlinear analysis of macaque V1 color tuning reveals cardinal directions for cortical color processing , 2012, Nature Neuroscience.

[44]  Qasim Zaidi,et al.  Visual mechanisms that signal the direction of color changes , 1993, Vision Research.

[45]  G. Rhodes,et al.  How is facial expression coded? , 2015, Journal of vision.

[46]  Alexander Borst,et al.  How does Nature Program Neuron Types? , 2008, Front. Neurosci..

[47]  H. Komatsu,et al.  Color Selectivity of Neurons in the Posterior Inferior Temporal Cortex of the Macaque Monkey , 2009, Cerebral cortex.

[48]  Bruno Latour,et al.  Experience : Culture, Cognition and the Common Sense , 2016 .

[49]  Barry B. Lee,et al.  The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type , 1994, Nature.

[50]  Bevil R. Conway,et al.  Response: Towards a neural representation for unique hues , 2009, Current Biology.

[51]  Nicole C. Rust,et al.  Selectivity and Tolerance (“Invariance”) Both Increase as Visual Information Propagates from Cortical Area V4 to IT , 2010, The Journal of Neuroscience.

[52]  C. Ripamonti,et al.  Computational Colour Science Using MATLAB , 2004 .

[53]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[54]  D. J. Felleman,et al.  A spatially organized representation of colour in macaque cortical area V2 , 2003, Nature.

[55]  Bevil R. Conway,et al.  Psychophysical Chromatic Mechanisms in Macaque Monkey , 2012, The Journal of Neuroscience.

[56]  Angela M. Brown,et al.  World Color Survey color naming reveals universal motifs and their within-language diversity , 2009, Proceedings of the National Academy of Sciences.

[57]  Rolf G. Kuehni,et al.  Color ordered : a survey of color order systems from antiquity to the present , 2008 .

[58]  J. B. Levitt,et al.  Functional properties of neurons in macaque area V3. , 1997, Journal of neurophysiology.

[59]  S. Zeki,et al.  Responses of spectrally selective cells in macaque area V2 to wavelengths and colors. , 2002, Journal of neurophysiology.

[60]  S. Zeki,et al.  Three cortical stages of colour processing in the human brain. , 1998, Brain : a journal of neurology.

[61]  J. Movshon,et al.  The analysis of visual motion: a comparison of neuronal and psychophysical performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  P. Lennie,et al.  Chromatic mechanisms in striate cortex of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[64]  S. Schein,et al.  Is there a high concentration of color-selective cells in area V4 of monkey visual cortex? , 1982, Journal of neurophysiology.

[65]  W. Stiles,et al.  N.P.L. Colour-matching Investigation: Final Report (1958) , 1959 .

[66]  D. W. Heeley,et al.  Cardinal directions of color space , 1982, Vision Research.

[67]  Monica A. Gates,et al.  Color-detection thresholds in rhesus macaque monkeys and humans. , 2014, Journal of vision.

[68]  R. L. Valois,et al.  Some transformations of color information from lateral geniculate nucleus to striate cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[69]  D. Heeger,et al.  Decoding and Reconstructing Color from Responses in Human Visual Cortex , 2009, The Journal of Neuroscience.

[70]  H. Komatsu,et al.  Effects of task demands on the responses of color-selective neurons in the inferior temporal cortex , 2007, Nature Neuroscience.

[71]  R. L. Valois,et al.  Temporal dynamics of chromatic tuning in macaque primary visual cortex , 1998, Nature.

[72]  Bevil R. Conway,et al.  Spatial Structure of Cone Inputs to Color Cells in Alert Macaque Primary Visual Cortex (V-1) , 2001, The Journal of Neuroscience.

[73]  Radoslaw Martin Cichy,et al.  Resolving human object recognition in space and time , 2014, Nature Neuroscience.

[74]  Gouki Okazawa,et al.  Representation of the Material Properties of Objects in the Visual Cortex of Nonhuman Primates , 2014, The Journal of Neuroscience.

[75]  D. Kiper,et al.  Chromatic properties of neurons in macaque area V2 , 1997, Visual Neuroscience.

[76]  H. Komatsu,et al.  Reciprocal connectivity of identified color-processing modules in the monkey inferior temporal cortex. , 2011, Cerebral cortex.

[77]  R. Shapley,et al.  Color in the Cortex: single- and double-opponent cells , 2011, Vision Research.

[78]  Karl R Gegenfurtner,et al.  Higher order color mechanisms: evidence from noise-masking experiments in cone contrast space. , 2013, Journal of vision.

[79]  Bevil R. Conway,et al.  Color-tuned neurons are spatially clustered according to color preference within alert macaque posterior inferior temporal cortex , 2009, Proceedings of the National Academy of Sciences.

[80]  G. Orban,et al.  Search for color 'center(s)' in macaque visual cortex. , 2004, Cerebral cortex.

[81]  Bevil R. Conway,et al.  Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex , 2013, Nature Neuroscience.

[82]  Fang Liu,et al.  Perceptual Color Map in Macaque Visual Area V4 , 2014, The Journal of Neuroscience.

[83]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[84]  Bevil R. Conway,et al.  Color Vision, Cones, and Color-Coding in the Cortex , 2009, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[85]  Changjun Li,et al.  The CIECAM02 Color Appearance Model , 2002, CIC.

[86]  J. Davidoff,et al.  Color categories are not universal: replications and new evidence from a stone-age culture. , 2000, Journal of experimental psychology. General.

[87]  M. Webster,et al.  Variations in normal color vision. II. Unique hues. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[88]  Bevil R. Conway,et al.  Advances in Color Science: From Retina to Behavior , 2010, The Journal of Neuroscience.

[89]  J. Mollon,et al.  A neural basis for unique hues? , 2009, Current Biology.

[90]  R. L. Valois,et al.  Analysis of response patterns of LGN cells. , 1966, Journal of the Optical Society of America.

[91]  Karl R Gegenfurtner,et al.  Higher level chromatic mechanisms for image segmentation. , 2006, Journal of vision.

[92]  A. Linksz Outlines of a Theory of the Light Sense. , 1965 .

[93]  E T Rolls,et al.  Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. , 1995, Journal of neurophysiology.

[94]  Alex R. Wade,et al.  fMRI measurements of color in macaque and human. , 2008, Journal of vision.

[95]  P. Lennie,et al.  Habituation Reveals Fundamental Chromatic Mechanisms in Striate Cortex of Macaque , 2008, The Journal of Neuroscience.

[96]  Tandra Ghose,et al.  Generalization between canonical and non-canonical views in object recognition. , 2013, Journal of vision.

[97]  Leo Maurice Hurvich,et al.  Color vision , 1981 .

[98]  Nikolaus Kriegeskorte,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[99]  K. D. De Valois,et al.  A multi-stage color model. , 1993, Vision research.

[100]  P. Lennie,et al.  The machinery of colour vision , 2007, Nature Reviews Neuroscience.

[101]  Barry B. Lee,et al.  Specificity of cone inputs to macaque retinal ganglion cells. , 2006, Journal of neurophysiology.

[102]  M. Webster,et al.  Changes in colour appearance following post-receptoral adaptation , 1991, Nature.

[103]  C. Cierpka,et al.  Particle imaging techniques for volumetric three-component (3D3C) velocity measurements in microfluidics , 2011, Journal of Visualization.

[104]  V C Smith,et al.  Cone-rod receptor spaces with illustrations that use CRT phosphor and light-emitting-diode spectra. , 1996, Journal of the Optical Society of America. A, Optics, image science, and vision.