Sensitivity Analysis of Minimum Spanning Trees in Sub-Inverse-Ackermann Time

We present a deterministic algorithm for computing the sensitivity of a minimum spanning tree (MST) or shortest path tree in $O(m\log\alpha(m,n))$ time, where $\alpha$ is the inverse-Ackermann function. This improves upon a long standing bound of $O(m\alpha(m,n))$ established by Tarjan. Our algorithms are based on an efficient split-findmin data structure, which maintains a collection of sequences of weighted elements that may be split into smaller subsequences. As far as we are aware, our split-findmin algorithm is the first with superlinear but sub-inverse-Ackermann complexity. We also give a reduction from MST sensitivity to the MST problem itself. Together with the randomized linear time MST algorithm of Karger, Klein, and Tarjan, this gives another randomized linear time MST sensitivity algoritm.

[1]  Michael E. Saks,et al.  The cell probe complexity of dynamic data structures , 1989, STOC '89.

[2]  Robert E. Tarjan,et al.  Verification and Sensitivity Analysis of Minimum Spanning Trees in Linear Time , 1992, SIAM J. Comput..

[3]  Seth Pettie,et al.  An Inverse-Ackermann Type Lower Bound For Online Minimum Spanning Tree Verification* , 2006, Comb..

[4]  Bernard Chazelle,et al.  The soft heap: an approximate priority queue with optimal error rate , 2000, JACM.

[5]  Michael A. Bender,et al.  The LCA Problem Revisited , 2000, LATIN.

[6]  Mikkel Thorup,et al.  Undirected single-source shortest paths with positive integer weights in linear time , 1999, JACM.

[7]  Seth Pettie,et al.  A new approach to all-pairs shortest paths on real-weighted graphs , 2004, Theor. Comput. Sci..

[8]  Seth Pettie,et al.  Randomized minimum spanning tree algorithms using exponentially fewer random bits , 2008, TALG.

[9]  János Komlós Linear Verification for Spanning Trees , 1984, FOCS.

[10]  Torben Hagerup,et al.  Improved Shortest Paths on the Word RAM , 2000, ICALP.

[11]  Robert E. Tarjan,et al.  Sensitivity Analysis of Minimum Spanning Trees and Shortest Path Trees , 1982, Inf. Process. Lett..

[12]  Robert E. Tarjan,et al.  A linear-time algorithm for a special case of disjoint set union , 1983, J. Comput. Syst. Sci..

[13]  Wayne Goddard,et al.  Optimal randomized algorithms for local sorting and set-maxima , 1990, STOC '90.

[14]  Philip N. Klein,et al.  A randomized linear-time algorithm for finding minimum spanning trees , 1994, STOC '94.

[15]  Martin Mares,et al.  The saga of minimum spanning trees , 2008, Comput. Sci. Rev..

[16]  Philip N. Klein,et al.  A randomized linear-time algorithm to find minimum spanning trees , 1995, JACM.

[17]  Robert E. Tarjan,et al.  Applications of Path Compression on Balanced Trees , 1979, JACM.

[18]  Seth Pettie,et al.  On the Comparison-Addition Complexity of All-Pairs Shortest Paths , 2002, ISAAC.

[19]  Seth Pettie,et al.  An optimal minimum spanning tree algorithm , 2000, JACM.

[20]  Torben Hagerup An Even Simpler Linear-Time Algorithm for Verifying Minimum Spanning Trees , 2009, WG.

[21]  Robert E. Tarjan,et al.  Fast Algorithms for Finding Nearest Common Ancestors , 1984, SIAM J. Comput..

[22]  Robert E. Tarjan,et al.  A Class of Algorithms which Require Nonlinear Time to Maintain Disjoint Sets , 1979, J. Comput. Syst. Sci..

[23]  Seth Pettie,et al.  A Shortest Path Algorithm for Real-Weighted Undirected Graphs , 2005, SIAM J. Comput..

[24]  Robert E. Tarjan,et al.  Scaling and related techniques for geometry problems , 1984, STOC '84.

[25]  Robert E. Tarjan,et al.  Faster scaling algorithms for general graph matching problems , 1991, JACM.

[26]  Seth Pettie,et al.  A Faster All-Pairs Shortest Path Algorithm for Real-Weighted Sparse Graphs , 2002, ICALP.

[27]  Jesper Larsson Träff,et al.  A Practical Minimum Spanning Tree Algorithm Using the Cycle Property , 2003, ESA.

[28]  Bernard Chazelle,et al.  The complexity of computing partial sums off-line , 1991, Int. J. Comput. Geom. Appl..

[29]  Bernard Chazelle,et al.  A minimum spanning tree algorithm with inverse-Ackermann type complexity , 2000, JACM.

[30]  Harold N. Gabow,et al.  A scaling algorithm for weighted matching on general graphs , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[31]  Han La Poutré Lower bounds for the union-find and the split-find problem on pointer machines , 1990, STOC '90.

[32]  Bernard Chazelle Computing on a Free Tree via Complexity-Preserving Mappings , 1984, FOCS.

[33]  Ronald L. Graham,et al.  On the History of the Minimum Spanning Tree Problem , 1985, Annals of the History of Computing.

[34]  Robert E. Tarjan,et al.  Efficiency of a Good But Not Linear Set Union Algorithm , 1972, JACM.

[35]  Valerie King A simpler minimum spanning tree verification algorithm , 2006, Algorithmica.

[36]  Seth Pettie,et al.  Minimizing randomness in minimum spanning tree, parallel connectivity, and set maxima algorithms , 2002, SODA '02.