Successive Nonnegative Projection Algorithm for Robust Nonnegative Blind Source Separation

In this paper, we propose a new fast and robust recursive algorithm for near-separable nonnegative matrix factorization, a particular nonnegative blind source separation problem. This algorithm, which we refer to as the successive nonnegative projection algorithm (SNPA), is closely related to the popular successive projection algorithm (SPA) but takes advantage of the nonnegativity constraint in the decomposition. We prove that SNPA is more robust than SPA and can be applied to a broader class of nonnegative matrices. This is illustrated on some synthetic data sets and on a real-world hyperspectral image.

[1]  Vikas Sindhwani,et al.  Fast Conical Hull Algorithms for Near-separable Non-negative Matrix Factorization , 2012, ICML.

[2]  Venkatesh Saligrama,et al.  Topic Discovery through Data Dependent and Random Projections , 2013, ICML.

[3]  Chong-Yung Chi,et al.  Hyperspectral Data Geometry-Based Estimation of Number of Endmembers Using p-Norm-Based Pure Pixel Identification Algorithm , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[5]  Karthik Devarajan,et al.  Nonnegative Matrix Factorization: An Analytical and Interpretive Tool in Computational Biology , 2008, PLoS Comput. Biol..

[6]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[7]  Joel A. Tropp,et al.  Factoring nonnegative matrices with linear programs , 2012, NIPS.

[8]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[9]  Michael W. Berry,et al.  Document clustering using nonnegative matrix factorization , 2006, Inf. Process. Manag..

[10]  Nicolas Gillis,et al.  Robust near-separable nonnegative matrix factorization using linear optimization , 2013, J. Mach. Learn. Res..

[11]  M. C. U. Araújo,et al.  The successive projections algorithm for variable selection in spectroscopic multicomponent analysis , 2001 .

[12]  Nicolas Gillis,et al.  Sparse and unique nonnegative matrix factorization through data preprocessing , 2012, J. Mach. Learn. Res..

[13]  Sanjeev Arora,et al.  Computing a nonnegative matrix factorization -- provably , 2011, STOC '12.

[14]  Chong-Yung Chi,et al.  A Simplex Volume Maximization Framework for Hyperspectral Endmember Extraction , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Nicolas Gillis,et al.  The Why and How of Nonnegative Matrix Factorization , 2014, ArXiv.

[16]  Fei Wang,et al.  Community discovery using nonnegative matrix factorization , 2011, Data Mining and Knowledge Discovery.

[17]  Antonio J. Plaza,et al.  A Signal Processing Perspective on Hyperspectral Unmixing: Insights from Remote Sensing , 2014, IEEE Signal Processing Magazine.

[18]  Tomohiko Mizutani,et al.  Ellipsoidal rounding for nonnegative matrix factorization under noisy separability , 2013, J. Mach. Learn. Res..

[19]  Marian-Daniel Iordache,et al.  Greedy algorithms for pure pixels identification in hyperspectral unmixing: A multiple-measurement vector viewpoint , 2013, 21st European Signal Processing Conference (EUSIPCO 2013).

[20]  Chein-I Chang,et al.  Automatic spectral target recognition in hyperspectral imagery , 2003 .

[21]  Nicolas Gillis,et al.  Robustness Analysis of Hottopixx, a Linear Programming Model for Factoring Nonnegative Matrices , 2012, SIAM J. Matrix Anal. Appl..

[22]  Guillermo Sapiro,et al.  See all by looking at a few: Sparse modeling for finding representative objects , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Paul D. Gader,et al.  A Signal Processing Perspective on Hyperspectral Unmixing , 2014 .

[24]  Michael Möller,et al.  A Convex Model for Nonnegative Matrix Factorization and Dimensionality Reduction on Physical Space , 2011, IEEE Transactions on Image Processing.

[25]  Stephen A. Vavasis,et al.  On the Complexity of Nonnegative Matrix Factorization , 2007, SIAM J. Optim..

[26]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[27]  Chong-Yung Chi,et al.  A Convex Analysis Framework for Blind Separation of Non-Negative Sources , 2008, IEEE Transactions on Signal Processing.

[28]  Nicolas Gillis,et al.  Semidefinite Programming Based Preconditioning for More Robust Near-Separable Nonnegative Matrix Factorization , 2013, SIAM J. Optim..

[29]  Sanjeev Arora,et al.  A Practical Algorithm for Topic Modeling with Provable Guarantees , 2012, ICML.

[30]  Nicolas Gillis,et al.  Accelerated Multiplicative Updates and Hierarchical ALS Algorithms for Nonnegative Matrix Factorization , 2011, Neural Computation.

[31]  Golub Gene H. Et.Al Matrix Computations, 3rd Edition , 2007 .

[32]  Nicolas Gillis,et al.  Fast and Robust Recursive Algorithmsfor Separable Nonnegative Matrix Factorization , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Sanjeev Arora,et al.  Learning Topic Models -- Going beyond SVD , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[34]  Leon Hirsch,et al.  Fundamentals Of Convex Analysis , 2016 .

[35]  Antonio J. Plaza,et al.  Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[36]  V. P. Pauca,et al.  Nonnegative matrix factorization for spectral data analysis , 2006 .