Chaotic Synchronization and Secure Communication via Sliding-Mode Observer

Information signal embedded in a chaotic transmitter can be recovered by a receiver if it is a replica of the transmitter. In this paper, a new aspect of chaotic communication is introduced. A sliding-mode observer replaces the conventional chaotic system at the receiver side, which does not need information from the transmitter. So the uncertainties in the transmitter and the transmission line do not affect the synchronization, the proposed communication scheme is robust with respect to some disturbances and uncertainties. Three chaotic systems, Duffing equation, Van der Pol oscillator and Chua’s circuit, are provided to illustrate the effectiveness of the chaotic communication.

[1]  J. Suykens,et al.  Robust nonlinear H/sub /spl infin// synchronization of chaotic Lur'e systems , 1997 .

[2]  Martin Hasler,et al.  Synchronization of chaotic systems and transmission of information , 1998 .

[3]  R. Aguilar-López,et al.  A new reduced-order observer design for the synchronization of Lorenz systems , 2006 .

[4]  J. Suykens,et al.  Robust synthesis for master-slave synchronization of Lur'e systems , 1999 .

[5]  Leon O. Chua,et al.  Transmission of Digital signals by Chaotic Synchronization , 1992, Chua's Circuit.

[6]  Guanrong Chen,et al.  On feedback control of chaotic continuous-time systems , 1993 .

[7]  Morgül,et al.  Observer based synchronization of chaotic systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  L. Chua,et al.  A UNIFIED FRAMEWORK FOR SYNCHRONIZATION AND CONTROL OF DYNAMICAL SYSTEMS , 1994 .

[9]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[10]  Teh-Lu Liao,et al.  An observer-based approach for chaotic synchronization with applications to secure communications , 1999 .

[11]  Tommy W. S. Chow,et al.  Chaotic network synchronization with application to communications , 2001, Int. J. Commun. Syst..

[12]  Leon O. Chua,et al.  Experimental Demonstration of Secure Communications via Chaotic Synchronization , 1992, Chua's Circuit.

[13]  Toshimitsu Ushio SYNTHESIS OF SYNCHRONIZED CHAOTIC SYSTEMS BASED ON OBSERVERS , 1999 .

[14]  Shuzhi Sam Ge,et al.  Variable Structure and Sliding Mode Control Focus [Technical Committee Activities] , 2010 .

[15]  Johan A. K. Suykens,et al.  Robust Nonlinear H Synchronization of Chaotic Lur'e Systems , 1997 .

[16]  J. Slotine,et al.  On Sliding Observers for Nonlinear Systems , 1986, 1986 American Control Conference.

[17]  Ilse Cervantes,et al.  Stability of Observer-Based Chaotic Communications for a Class of Lur'e Systems , 2002, Int. J. Bifurc. Chaos.

[18]  Yang Tao,et al.  Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication , 1997 .

[19]  V. Utkin,et al.  Sliding mode observers. Tutorial , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[20]  Alexander S. Poznyak,et al.  A New Robust Sliding-Mode Observer Design for Monitoring in Chemical Reactors , 2004 .

[21]  M. Boutayeb,et al.  Generalized state-space observers for chaotic synchronization and secure communication , 2002 .

[22]  Vaithianathan Venkatasubramanian,et al.  Singularity induced bifurcation and the van der Pol oscillator , 1994 .

[23]  Xiaoou Li,et al.  Observer-based neuro identifier , 2000 .

[24]  Peter Liu,et al.  Synthesis of fuzzy model-based designs to synchronization and secure communications for chaotic systems , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[25]  Henk Nijmeijer,et al.  System identification in communication with chaotic systems , 2000 .