An atomistically enriched continuum model for nanoscale contact mechanics and its application to contact scaling.

This work provides a comprehensive exposition and extension of an atomistically enriched contact mechanics model initially proposed by the present authors. The contact model is based on the coarse-graining of the interaction occurring between the molecules of the contacting bodies. As these bodies may be highly compliant, a geometrically nonlinear kinematical description is chosen. Thus a large deformation continuum contact formulation is obtained which reflects the attractive and repulsive character of intermolecular interactions. Further emphasis is placed on the efficiency of the proposed atomistic-continuum contact model in numerical simulations. Therefore three contact formulations are discussed and validated by lattice statics computations. Demonstrated by a simple benchmark problem the scaling of the proposed contact model is investigated and some of the important scaling laws are obtained. In particular, the length scaling, or size effect, of the contact model is studied. Due to its formal generality and its numerical efficiency over a wide range of length scales, the proposed contact formulation can be applied to a variety of multiscale contact phenomena. This is illustrated by several numerical examples.

[1]  Roger A. Sauer,et al.  An atomic interaction‐based continuum model for computational multiscale contact mechanics , 2007 .

[2]  Roger A. Sauer,et al.  A contact mechanics model for quasi‐continua , 2007 .

[3]  Roger A. Sauer,et al.  An atomic interaction-based continuum model for adhesive contact mechanics , 2007 .

[4]  Harold S. Park,et al.  A surface Cauchy–Born model for nanoscale materials , 2006 .

[5]  J. Molinari,et al.  Multiscale modeling of two-dimensional contacts. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  E. Leiva,et al.  Two-grain nanoindentation using the quasicontinuum method: Two-dimensional model approach , 2006 .

[7]  F. Sansoz,et al.  Deformation of Nanocrystalline Metals under Nanoscale Contact , 2006 .

[8]  Jiunn-Jong Wu Adhesive contact between a nano-scale rigid sphere and an elastic half-space , 2006 .

[9]  J. Q. Broughton,et al.  Coarse-grained molecular dynamics: Nonlinear finite elements and finite temperature , 2005, cond-mat/0508527.

[10]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[11]  B. Bhushan Nanotribology and nanomechanics , 2005 .

[12]  B. Luan,et al.  The breakdown of continuum models for mechanical contacts , 2005, Nature.

[13]  Huajian Gao,et al.  Mechanics of hierarchical adhesion structures of geckos , 2005 .

[14]  J. Thiery,et al.  Johnson-Kendall-Roberts theory applied to living cells. , 2005, Physical review letters.

[15]  Sung-San Cho,et al.  Finite element modeling of adhesive contact using molecular potential , 2004 .

[16]  Ki Myung Lee,et al.  Crystallite coalescence during film growth based on improved contact mechanics adhesion models , 2004 .

[17]  Ting Zhu,et al.  Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper , 2004 .

[18]  P. Gumbsch,et al.  Atomistic modeling of mechanical behavior , 2003 .

[19]  David B. Bogy,et al.  Head-disk interface dynamic instability due to intermolecular forces , 2003 .

[20]  Dong Qian,et al.  Effect of interlayer potential on mechanical deformation of multiwalled carbon nanotubes. , 2003, Journal of nanoscience and nanotechnology.

[21]  Ronald S. Fearing,et al.  Synthetic gecko foot-hair micro/nano-structures as dry adhesives , 2003 .

[22]  Ronald E. Miller,et al.  The Quasicontinuum Method: Overview, applications and current directions , 2002 .

[23]  Ted Belytschko,et al.  An atomistic-based finite deformation membrane for single layer crystalline films , 2002 .

[24]  P. Wriggers,et al.  Computational Contact Mechanics , 2002 .

[25]  R. Full,et al.  Evidence for van der Waals adhesion in gecko setae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  I. Goldhirsch,et al.  On the microscopic foundations of elasticity , 2002, The European physical journal. E, Soft matter.

[27]  T. Laursen Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis , 2002 .

[28]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[29]  Rafael Tadmor,et al.  LETTER TO THE EDITOR: The London-van der Waals interaction energy between objects of various geometries , 2001 .

[30]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[31]  R. Full,et al.  Adhesive force of a single gecko foot-hair , 2000, Nature.

[32]  Michael Ortiz,et al.  Nanoindentation and incipient plasticity , 1999 .

[33]  Phaedon Avouris,et al.  Deformation of carbon nanotubes by surface van der Waals forces , 1998 .

[34]  Robert E. Rudd,et al.  COARSE-GRAINED MOLECULAR DYNAMICS AND THE ATOMIC LIMIT OF FINITE ELEMENTS , 1998 .

[35]  Richard Martel,et al.  Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces , 1998 .

[36]  Jagota,et al.  An Intersurface Stress Tensor , 1997, Journal of colloid and interface science.

[37]  Anand Jagota,et al.  Surface formulation for molecular interactions of macroscopic bodies , 1997 .

[38]  G. Zanzotto,et al.  The Cauchy-Born hypothesis, nonlinear elasticity and mechanical twinning in crystals , 1996 .

[39]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[40]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[41]  Rodney S. Ruoff,et al.  Radial deformation of carbon nanotubes by van der Waals forces , 1993, Nature.

[42]  Murray S. Daw,et al.  The embedded-atom method: a review of theory and applications , 1993 .

[43]  D. Maugis Adhesion of spheres : the JKR-DMT transition using a dugdale model , 1992 .

[44]  J. Ericksen The Cauchy and Born Hypotheses for Crystals. , 1983 .

[45]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[46]  B. V. Derjaguin,et al.  Effect of contact deformations on the adhesion of particles , 1975 .

[47]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[48]  Anahí Gallardo Velázquez,et al.  Conference , 1969, Journal of Neuroscience Methods.

[49]  H. C. Hamaker The London—van der Waals attraction between spherical particles , 1937 .

[50]  R. S. Bradley,et al.  LXXIX. The cohesive force between solid surfaces and the surface energy of solids , 1932 .

[51]  A. Fischer-Cripps Nanoindentation of Thin Films , 2004 .

[52]  D. Frenkel,et al.  Understanding molecular simulation : from algorithms to applications. 2nd ed. , 2002 .

[53]  T. Schlick Molecular modeling and simulation , 2002 .

[54]  G. Dietler,et al.  Force-distance curves by atomic force microscopy , 1999 .

[55]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[56]  J. Israelachvili Intermolecular and surface forces , 1985 .

[57]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[58]  M. Gurtin,et al.  Phase Transformation and Material Instabilities in Solids , 1984 .

[59]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .

[60]  P. Chadwick Continuum Mechanics: Concise Theory and Problems , 1976 .