Multiobjective optimization approach: thermal food processing.

The objective of this study was to utilize a multiobjective optimization technique for the thermal sterilization of packaged foods. The multiobjective optimization approach used in this study is based on the optimization of well-known aggregating functions by an adaptive random search algorithm. The applicability of the proposed approach was illustrated by solving widely used multiobjective test problems taken from the literature. The numerical results obtained for the multiobjective test problems and for the thermal processing problem show that the proposed approach can be effectively used for solving multiobjective optimization problems arising in the food engineering field.

[1]  Kishalay Mitra,et al.  Towards a better understanding of the epoxy-polymerization process using multi-objective evolutionary computation , 2004 .

[2]  Ricardo Simpson,et al.  Variable retort temperature optimization using adaptive random search techniques , 2008 .

[3]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[4]  Gerassimos C. Kopsidas,et al.  Multiobjective optimization of table olive preparation systems , 1995 .

[5]  Martin J. Oates,et al.  The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation , 2000, PPSN.

[6]  S. Holdsworth Thermal processing of packaged foods , 1997 .

[7]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[8]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[9]  A.J.B. van Boxtel,et al.  MULTI-OBJECTIVE OPTIMIZATION TO IMPROVE THE PRODUCT RANGE OF BAKING SYSTEMS , 2009 .

[10]  Dimitri P. Solomatine,et al.  Adaptive cluster covering and evolutionary approach: comparison, differences and similarities , 2005, 2005 IEEE Congress on Evolutionary Computation.

[11]  Christian von Lücken,et al.  Multi-objective pump scheduling optimisation using evolutionary strategies , 2005, Adv. Eng. Softw..

[12]  Chris T. Kiranoudis,et al.  Pareto design of conveyor-belt dryers , 2000 .

[13]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[14]  Fred W. Glover,et al.  Multi-objective process design in multi-purpose batch plants using a Tabu Search optimization algorithm , 2004, Comput. Chem. Eng..

[15]  D. Sarkar,et al.  Pareto-optimal solutions for multi-objective optimization of fed-batch bioreactors using nondominated sorting genetic algorithm. , 2005 .

[16]  Chris T. Kiranoudis,et al.  PRODUCT QUALITY MULTI-OBJECTIVE DRYER DESIGN , 1999 .

[17]  A. Teixeira,et al.  COMPUTER SIMULATION OF VARlABLE RETORT CONTROL AND CONTAINER GEOMETRY AS A POSSIBLE MEANS OF IMPROVING THIAMINE RETENTION IN THERMALLY PROCESSED FOODS. , 1975 .

[18]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[19]  Lucio Grandinetti,et al.  A niched genetic algorithm to solve a pollutant emission reduction problem in the manufacturing industry: A case study , 2007, Comput. Oper. Res..

[20]  Gade Pandu Rangaiah,et al.  Multi-Objective Optimization in Food Engineering , 2008 .

[21]  S. Gergely,et al.  The use of multiobjective optimization to improve wine filtration , 2003 .

[22]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[23]  Ricardo Simpson,et al.  Optimization criteria for batch retort battery design and operation in food canning-plants , 2003 .

[24]  Julio R. Banga,et al.  Optimization of the Thermal Processing of Conduction-Heated Canned Foods: Study of Several Objective Functions , 1991 .

[25]  Eva Balsa-Canto,et al.  Computing optimal operating policies for the food industry , 2006 .

[26]  Hosahalli S. Ramaswamy,et al.  Modeling and optimization of variable retort temperature (VRT) thermal processing using coupled neural networks and genetic algorithms , 2002 .

[27]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[28]  Chris T. Kiranoudis,et al.  Pareto design of fluidized bed dryers , 2000 .

[29]  H. Nishitani,et al.  The optimal flow-pattern of multiple effect evaporator systems , 1979 .

[30]  J. Paulo Davim,et al.  Multi-objective optimization of cutting parameters for drilling laminate composite materials by using genetic algorithms , 2006 .

[31]  Jeffrey Horn,et al.  Multi-objective optimal design of groundwater remediation systems: application of the niched Pareto genetic algorithm (NPGA) , 2002 .

[32]  Nantawan Therdthai,et al.  Optimisation of the temperature profile in bread baking , 2002 .

[33]  P. John Clarkson,et al.  The development of a multi-objective Tabu Search algorithm for continuous optimisation problems , 2008, Eur. J. Oper. Res..

[34]  Carlos A. Coello Coello,et al.  A Micro-Genetic Algorithm for Multiobjective Optimization , 2001, EMO.

[35]  Maria João Alves,et al.  MOTGA: A multiobjective Tchebycheff based genetic algorithm for the multidimensional knapsack problem , 2007, Comput. Oper. Res..

[36]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[37]  R. Sargent,et al.  Solution of a Class of Multistage Dynamic Optimization Problems. 2. Problems with Path Constraints , 1994 .

[38]  Eva Balsa-Canto,et al.  Improving food processing using modern optimization methods , 2003 .

[39]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[40]  Ricardo Simpson,et al.  Mathematical models and logic for the computer control of batch retorts: Conduction-heated foods , 1993 .

[41]  A. Abakarov,et al.  Thermal processing optimization through a modified adaptive random search , 2009 .

[42]  Ujjwal Maulik,et al.  A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA , 2008, IEEE Transactions on Evolutionary Computation.

[43]  Wai Keung Wong,et al.  Multiple-objective genetic optimization of the spatial design for packing and distribution carton boxes , 2008, Comput. Ind. Eng..