Design and analysis of an ultra-low-power LC quadrature VCO

This paper presents the design of an ultra-low-power LC quadrature VCO (QVCO). It is designed in a single-poly seven-metal 65-nm CMOS process. Several aspects of state-of-the-art QVCO design are addressed, for example tank design and circuit topologies in nano-meter CMOS technology. To minimize power dissipation, an inductor with a high LQ product of 188 nH at 2.4 GHz, and a self-resonant frequency (fSR) of 3.8 GHz, was designed. According to post-layout simulations, the power dissipation is below 300 μW at a 0.6 V supply. At this supply, the simulated tuning range and phase noise at 1 MHz offset are 10.3% (2.26–2.5 GHz) and −109.6 dBc/Hz respectively. The phase noise figure of merit (FoM) is better than 182.5 dB at all supply voltages of interest, which is competitive to other state-of-the-art QVCOs.

[1]  A. Bonfanti,et al.  Analysis and design of a 1.8-GHz CMOS LC quadrature VCO , 2002, IEEE J. Solid State Circuits.

[2]  Stephen P. Boyd,et al.  Simple accurate expressions for planar spiral inductances , 1999, IEEE J. Solid State Circuits.

[3]  Jan M. Rabaey,et al.  Ultra-Low Power Wireless Technologies for Sensor Networks , 2007 .

[4]  Sanjay Raman,et al.  Large-signal analysis of MOS varactors in CMOS -G/sub m/ LC VCOs , 2003 .

[5]  Ali Hajimiri,et al.  A general theory of phase noise in electrical oscillators , 1998 .

[6]  Henrik Sj A 24-GHz LC-QVCO in 130-nm CMOS using 4-bit Switched Tuning , 2008 .

[7]  H. Jacobsson,et al.  Very low phase-noise fully-integrated coupled VCOs , 2002, 2002 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium. Digest of Papers (Cat. No.02CH37280).

[8]  Sheng-Lyang Jang,et al.  A 0.22 V Quadrature VCO in 90 nm CMOS Process , 2009, IEEE Microwave and Wireless Components Letters.

[9]  Chih-Wei Yao,et al.  A phase-noise reduction technique for quadrature LC-VCO with phase-to-amplitude noise conversion , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[10]  A. Scholtz,et al.  Design of Monolithic Integrated Lumped Transformers in Silicon-based Technologies up to 20 GHz , 2000 .

[11]  E. Hegazi,et al.  23.4 A Filtering Technique to Lower Oscillator Phase Noise , 2008 .

[12]  H. Sjoland,et al.  A 24-GHz quadrature receiver front-end in 90-nm CMOS , 2009, 2009 Asia Pacific Microwave Conference.

[13]  Henrik Sjöland,et al.  A Distributed Capacitance Analysis of Co-Planar Inductors for a CMOS QVCO with Varactor Tuned Buffer Stage , 2004 .

[14]  N. M. Ibrahim,et al.  Analysis of current crowding effects in multiturn spiral inductors , 2001 .

[15]  H. Sjoland,et al.  A 24-GHz LC-QVCO in 130-nm CMOS using 4-bit switched tuning , 2008, 2008 International Conference on Microelectronics.

[16]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[17]  H. Sjoland,et al.  A 65-nm CMOS ultra-low-power LC quadrature VCO , 2009, 2009 NORCHIP.

[18]  Henrik Sjöland,et al.  MONOLITHIC INDUCTOR MODELING AND OPTIMIZATION , 2006 .

[19]  Salvatore Levantino,et al.  A low-phase-noise 5-GHz CMOS quadrature VCO using superharmonic coupling , 2003, IEEE J. Solid State Circuits.

[20]  A.W.L. Ng,et al.  A 1-V 17-GHz 5-mW CMOS Quadrature VCO Based on Transformer Coupling , 2007, IEEE Journal of Solid-State Circuits.

[21]  A. Rofougaran,et al.  A 900 MHz CMOS LC-oscillator with quadrature outputs , 1996, 1996 IEEE International Solid-State Circuits Conference. Digest of TEchnical Papers, ISSCC.

[22]  Sang-Gug Lee,et al.  A very low-power quadrature VCO with back-gate coupling , 2004, IEEE J. Solid State Circuits.

[23]  B. Razavi A study of injection locking and pulling in oscillators , 2004, IEEE Journal of Solid-State Circuits.

[24]  M. Tiebout,et al.  Low-power low-phase-noise differentially tuned quadrature VCO design in standard CMOS , 2001, IEEE J. Solid State Circuits.