Tidyproteomics: an open-source R package and data object for quantitative proteomics post analysis and visualization

[1]  Oliver M. Bernhardt,et al.  MSstats Version 4.0: Statistical Analyses of Quantitative Mass Spectrometry-Based Proteomic Experiments with Chromatography-Based Quantification at Scale. , 2023, Journal of proteome research.

[2]  O. Vitek,et al.  MSstatsShiny: A GUI for Versatile, Scalable, and Reproducible Statistical Analyses of Quantitative Proteomic Experiments. , 2023, Journal of proteome research.

[3]  A. Smit,et al.  MS-DAP Platform for Downstream Data Analysis of Label-Free Proteomics Uncovers Optimal Workflows in Benchmark Data Sets and Increased Sensitivity in Analysis of Alzheimer’s Biomarker Data , 2022, Journal of proteome research.

[4]  Christian Panse,et al.  prolfqua: A Comprehensive R-Package for Proteomics Differential Expression Analysis , 2022, bioRxiv.

[5]  M. Schilling,et al.  MSPypeline: a python package for streamlined data analysis of mass spectrometry-based proteomics , 2022, Bioinformatics advances.

[6]  P. Picotti,et al.  protti: an R package for comprehensive data analysis of peptide- and protein-centric bottom-up proteomics data , 2021, Bioinformatics advances.

[7]  T. Chou,et al.  Temporal proteomics reveal specific cell cycle oncoprotein downregulation by p97/VCP inhibition. , 2021, Cell chemical biology.

[8]  Jingqiu Cheng,et al.  StatsPro: Systematic integration and evaluation of statistical approaches for detecting differential expression in label-free quantitative proteomics. , 2021, Journal of proteomics.

[9]  I. Iliopoulos,et al.  ProteoSign v2: a faster and evolved user-friendly online tool for statistical analyses of differential proteomics , 2021, Nucleic Acids Res..

[10]  Ben Orsburn,et al.  Proteome Discoverer—A Community Enhanced Data Processing Suite for Protein Informatics , 2021, Proteomes.

[11]  Jens Decker,et al.  Highly Multiplexed Targeted Proteomics Acquisition on a TIMS-QTOF. , 2020, Analytical chemistry.

[12]  Yang Han,et al.  Plasma Proteomics Identify Biomarkers and Pathogenesis of COVID-19 , 2020, Immunity.

[13]  Paul D Piehowski,et al.  A review of imputation strategies for isobaric labeling-based shotgun proteomics. , 2020, Journal of proteome research.

[14]  Thomas Yu,et al.  DreamAI: algorithm for the imputation of proteomics data , 2020, bioRxiv.

[15]  Alexey I. Nesvizhskii,et al.  Philosopher: a versatile toolkit for shotgun proteomics data analysis , 2020, Nature Methods.

[16]  Costel C Darie,et al.  A Critical Review of Bottom-Up Proteomics: The Good, the Bad, and the Future of This Field , 2020, Proteomes.

[17]  S. Anders,et al.  DEqMS: A Method for Accurate Variance Estimation in Differential Protein Expression Analysis. , 2020, Molecular & cellular proteomics : MCP.

[18]  Lindsay K. Pino,et al.  The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. , 2020, Mass spectrometry reviews.

[19]  L. Liao,et al.  A Normalization Method Utilizing Endogenous Proteins for Quantitative Proteomics. , 2020, Journal of the American Society for Mass Spectrometry.

[20]  Devin K. Schweppe,et al.  Benchmarking the Orbitrap Tribrid Eclipse for Next Generation Multiplexed Proteomics. , 2020, Analytical chemistry.

[21]  Anup D Shah,et al.  LFQ-Analyst: An easy-to-use interactive web-platform to analyze and visualize label-free proteomics data preprocessed with MaxQuant. , 2020, Journal of proteome research.

[22]  E. Robert McDonald,et al.  Quantitative Proteomics of the Cancer Cell Line Encyclopedia , 2020, Cell.

[23]  Dorte B. Bekker-Jensen,et al.  A Compact Quadrupole-Orbitrap Mass Spectrometer with FAIMS Interface Improves Proteome Coverage in Short LC Gradients* , 2019, Molecular & Cellular Proteomics.

[24]  Kohske Takahashi,et al.  Welcome to the Tidyverse , 2019, J. Open Source Softw..

[25]  Christoph H Borchers,et al.  Targeted and Untargeted Proteomics Approaches in Biomarker Development , 2019, Proteomics.

[26]  J. Virtanen,et al.  Random forest-based imputation outperforms other methods for imputing LC-MS metabolomics data: a comparative study , 2019, BMC Bioinform..

[27]  Lennart Martens,et al.  MSqRob takes the missing hurdle: uniting intensity- and count-based proteomics , 2019, bioRxiv.

[28]  Lennart Martens,et al.  Robust summarization and inference in proteome-wide label-free quantification , 2019, bioRxiv.

[29]  Simon Anders,et al.  proDA: Probabilistic Dropout Analysis for Identifying Differentially Abundant Proteins in Label-Free Mass Spectrometry , 2019, bioRxiv.

[30]  Martin Wühr,et al.  A Review on Quantitative Multiplexed Proteomics , 2019, Chembiochem : a European journal of chemical biology.

[31]  D. Chan,et al.  Cancer biomarker discovery and translation: proteomics and beyond , 2019, Expert review of proteomics.

[32]  Martin Eisenacher,et al.  mzTab-M: A Data Standard for Sharing Quantitative Results in Mass Spectrometry Metabolomics , 2019, Analytical chemistry.

[33]  Gary D Bader,et al.  Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap , 2019, Nature Protocols.

[34]  Kristin E. Burnum-Johnson,et al.  pmartR: Quality Control and Statistics for Mass Spectrometry-Based Biological Data , 2019, Journal of proteome research.

[35]  Fredrik Levander,et al.  NormalyzerDE: Online Tool for Improved Normalization of Omics Expression Data and High-Sensitivity Differential Expression Analysis. , 2018, Journal of proteome research.

[36]  K F Reardon,et al.  Label-Free Proteomics of a Defined, Binary Co-culture Reveals Diversity of Competitive Responses Between Members of a Model Soil Microbial System , 2018, Microbial Ecology.

[37]  Jüergen Cox,et al.  The MaxQuant computational platform for mass spectrometry-based shotgun proteomics , 2016, Nature Protocols.

[38]  Laura L. Elo,et al.  A systematic evaluation of normalization methods in quantitative label-free proteomics , 2016, Briefings Bioinform..

[39]  Thomas Burger,et al.  DAPAR & ProStaR: software to perform statistical analyses in quantitative discovery proteomics , 2016, Bioinform..

[40]  K. Reinert,et al.  OpenMS: a flexible open-source software platform for mass spectrometry data analysis , 2016, Nature Methods.

[41]  Marco Y. Hein,et al.  The Perseus computational platform for comprehensive analysis of (prote)omics data , 2016, Nature Methods.

[42]  Ryan W. Benz,et al.  A Plasma-Based Protein Marker Panel for Colorectal Cancer Detection Identified by Multiplex Targeted Mass Spectrometry , 2016, Clinical colorectal cancer.

[43]  Mohammad Al Hasan,et al.  Pathway and network analysis in proteomics. , 2014, Journal of theoretical biology.

[44]  Brendan MacLean,et al.  MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments , 2014, Bioinform..

[45]  Marco Y. Hein,et al.  Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ * , 2014, Molecular & Cellular Proteomics.

[46]  A. Mobasheri,et al.  Application of machine learning to proteomics data: classification and biomarker identification in postgenomics biology. , 2013, Omics : a journal of integrative biology.

[47]  Amber L. Couzens,et al.  The CRAPome: a Contaminant Repository for Affinity Purification Mass Spectrometry Data , 2013, Nature Methods.

[48]  Martin Eisenacher,et al.  The mzQuantML Data Standard for Mass Spectrometry–based Quantitative Studies in Proteomics , 2013, Molecular & Cellular Proteomics.

[49]  Alan R. Dabney,et al.  Normalization and missing value imputation for label-free LC-MS analysis , 2012, BMC Bioinformatics.

[50]  Wentian Li Volcano Plots in Analyzing differential Expressions with mRNA microarrays , 2012, J. Bioinform. Comput. Biol..

[51]  Zengyou He,et al.  Protein inference: a review , 2012, Briefings Bioinform..

[52]  Joel G Pounds,et al.  A statistical selection strategy for normalization procedures in LC‐MS proteomics experiments through dataset‐dependent ranking of normalization scaling factors , 2011, Proteomics.

[53]  Peter Bühlmann,et al.  MissForest - non-parametric missing value imputation for mixed-type data , 2011, Bioinform..

[54]  Joshua N. Adkins,et al.  Normalization of peak intensities in bottom-up MS-based proteomics using singular value decomposition , 2009, Bioinform..

[55]  J. Davis Bioinformatics and Computational Biology Solutions Using R and Bioconductor , 2007 .

[56]  Hua Tang,et al.  Normalization Regarding Non-Random Missing Values in High-Throughput Mass Spectrometry Data , 2005, Pacific Symposium on Biocomputing.

[57]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[58]  J. Villanueva,et al.  msmsEDA & msmsTests: Label-Free Differential Expression by Spectral Counts. , 2023, Methods in molecular biology.

[59]  Y. Couté,et al.  Statistical Analysis of Quantitative Peptidomics and Peptide-Level Proteomics Data with Prostar. , 2023, Methods in molecular biology.

[60]  Gordon K. Smyth,et al.  limma: Linear Models for Microarray Data , 2005 .