A phenomenological description of strain relaxation in GexSi1−x/Si(100) heterostructures

We describe how in situ observation of strain relaxation of Gex Si1−x /Si(100) heterostructures in a transmission electron microscope enable us to obtain the fundamental parameters which describe the nucleation, propagation, and interaction of misfit dislocations. Activation energies and prefactors are obtained for the nucleation and propagation processes for x in the range 0.20–0.35, and a simple model to account for dislocation interactions is developed. These measured parameters are then incorporated into a predictive model of strain relaxation which successfully reproduces experimental data. This model relies only upon parameters which can be directly measured.

[1]  E. Kasper,et al.  A one-dimensional SiGe superlattice grown by UHV epitaxy , 1975 .

[2]  John C. Bean,et al.  GexSi1−x/Si strained‐layer superlattice grown by molecular beam epitaxy , 1984 .

[3]  Jeffrey Y. Tsao,et al.  Relaxation of strained-layer semiconductor structures via plastic flow , 1987 .

[4]  E. A. Fitzgerald,et al.  The effect of substrate growth area on misfit and threading dislocation densities in mismatched heterostructures , 1989 .

[5]  John C. Bean,et al.  Nucleation of misfit dislocations in strained-layer epitaxy in the GexSi1−x/Si system , 1989 .

[6]  Tsao,et al.  Stress dependence of dislocation glide activation energy in single-crystal silicon-germanium alloys up to 2.6 GPa. , 1988, Physical review. B, Condensed matter.

[7]  Krishna Rajan,et al.  Dislocations and Interfaces in Semiconductors , 1988 .

[8]  I. J. Fritz Role of experimental resolution in measurements of critical layer thickness for strained-layer epitaxy , 1987 .

[9]  A. Howie,et al.  Electron Microscopy of Thin Crystals , 1977, Nature.

[10]  F. C. Frank,et al.  One-dimensional dislocations - III. Influence of the second harmonic term in the potential representation, on the properties of the model , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[11]  J. W. Matthews,et al.  Defects in epitaxial multilayers , 1974 .

[12]  C. Humphreys,et al.  Dislocation nucleation near the critical thickness in GeSi/Si strained layers , 1989 .

[13]  Bean,et al.  Activation barriers to strain relaxation in lattice-mismatched epitaxy. , 1989, Physical review. B, Condensed matter.

[14]  F. Nabarro,et al.  Dislocations in solids , 1979 .

[15]  R. Leibenguth,et al.  In situ observations of misfit dislocation propagation in GexSi1−x/Si(100) heterostructures , 1988 .

[16]  John C. Bean,et al.  Variation in misfit dislocation behavior as a function of strain in the GeSi/Si system , 1989 .

[17]  H. Strunk,et al.  A new type of source generating misfit dislocations , 1978 .

[18]  J. Tsao,et al.  Erratum: Relaxation of strained‐layer semiconductor structures via plastic flow [Appl. Phys. Lett. 51, 1325 (1987)] , 1988 .

[19]  J. R. Patel,et al.  Charged Impurity Effects on the Deformation of Dislocation-Free Germanium , 1966 .

[20]  J. W. Matthews,et al.  Use of misfit strain to remove dislocations from epitaxial thin films , 1976 .