The Striatum Organizes 3D Behavior via Moment-to-Moment Action Selection

[1]  K. Lashley The problem of serial order in behavior , 1951 .

[2]  William Rowan,et al.  The Study of Instinct , 1953 .

[3]  G. E. Alexander,et al.  Microstimulation of the primate neostriatum. II. Somatotopic organization of striatal microexcitable zones and their relation to neuronal response properties. , 1985, Journal of neurophysiology.

[4]  J. C. Fentress,et al.  Disruption of natural grooming chains after striatopallidal lesions , 1987, Psychobiology.

[5]  J. C. Fentress,et al.  Natural syntax rules control action sequence of rats , 1987, Behavioural Brain Research.

[6]  Jianhua Lin,et al.  Divergence measures based on the Shannon entropy , 1991, IEEE Trans. Inf. Theory.

[7]  J. Wayne Aldridge,et al.  Neuronal Coding of Serial Order: Syntax of Grooming in the Neostriatum , 1993 .

[8]  Dieter Jaeger,et al.  Neuronal activity in the striatum and pallidum of primates related to the execution of externally cued reaching movements , 1995, Brain Research.

[9]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[10]  Sam T. Roweis,et al.  EM Algorithms for PCA and SPCA , 1997, NIPS.

[11]  A. Graybiel The Basal Ganglia and Chunking of Action Repertoires , 1998, Neurobiology of Learning and Memory.

[12]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[13]  C. I. Connolly,et al.  Building neural representations of habits. , 1999, Science.

[14]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[15]  Charles J. Wilson,et al.  Corticostriatal combinatorics: the implications of corticostriatal axonal arborizations. , 2002, Journal of neurophysiology.

[16]  Richard Hans Robert Hahnloser,et al.  An ultra-sparse code underliesthe generation of neural sequences in a songbird , 2002, Nature.

[17]  J. W. Aldridge,et al.  Basal ganglia neural mechanisms of natural movement sequences. , 2004, Canadian journal of physiology and pharmacology.

[18]  A. Sadikot,et al.  Neurogenesis and stereological morphometry of calretinin‐immunoreactive GABAergic interneurons of the neostriatum , 2004, The Journal of comparative neurology.

[19]  M. Fendt,et al.  TMT-induced autonomic and behavioral changes and the neural basis of its processing , 2005, Neuroscience & Biobehavioral Reviews.

[20]  Zhi-Hong Mao,et al.  Dynamics of Winner-Take-All Competition in Recurrent Neural Networks With Lateral Inhibition , 2007, IEEE Transactions on Neural Networks.

[21]  Bernardo L Sabatini,et al.  Timing and Location of Synaptic Inputs Determine Modes of Subthreshold Integration in Striatal Medium Spiny Neurons , 2007, The Journal of Neuroscience.

[22]  Xin Jin,et al.  Start/stop signals emerge in nigrostriatal circuits during sequence learning , 2010, Nature.

[23]  Anatol C. Kreitzer,et al.  Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry , 2010, Nature.

[24]  A. Gamal,et al.  Miniaturized integration of a fluorescence microscope , 2011, Nature Methods.

[25]  R. Tibshirani,et al.  Regression shrinkage and selection via the lasso: a retrospective , 2011 .

[26]  M. Fee,et al.  A hypothesis for basal ganglia-dependent reinforcement learning in the songbird , 2011, Neuroscience.

[27]  Caroline A. Johnson,et al.  Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons , 2012, Front. Neural Circuits.

[28]  Steven S. Vogel,et al.  Concurrent Activation of Striatal Direct and Indirect Pathways During Action Initiation , 2013, Nature.

[29]  Y. Isomura,et al.  Reward-Modulated Motor Information in Identified Striatum Neurons , 2013, The Journal of Neuroscience.

[30]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[31]  C. Gerfen,et al.  GENSAT BAC Cre-Recombinase Driver Lines to Study the Functional Organization of Cerebral Cortical and Basal Ganglia Circuits , 2013, Neuron.

[32]  Henry H. Yin,et al.  Striatal firing rate reflects head movement velocity , 2014, The European journal of neuroscience.

[33]  G. Bottiroli,et al.  Autofluorescence Spectroscopy and Imaging: A Tool for Biomedical Research and Diagnosis , 2014, European journal of histochemistry : EJH.

[34]  Z. Mainen,et al.  Balanced activity in basal ganglia projection pathways is critical for contraversive movements , 2014, Nature Communications.

[35]  Ryan P. Adams,et al.  Mapping Sub-Second Structure in Mouse Behavior , 2015, Neuron.

[36]  Bernardo L Sabatini,et al.  Antagonistic but Not Symmetric Regulation of Primary Motor Cortex by Basal Ganglia Direct and Indirect Pathways. , 2015, Neuron.

[37]  P. Rueda-Orozco,et al.  The striatum multiplexes contextual and kinematic information to constrain motor habits execution , 2014, Nature Neuroscience.

[38]  Yi Li,et al.  Dopamine Is Required for the Neural Representation and Control of Movement Vigor , 2015, Cell.

[39]  A. Gordus,et al.  Sensitive red protein calcium indicators for imaging neural activity , 2016, bioRxiv.

[40]  David Pfau,et al.  Simultaneous Denoising, Deconvolution, and Demixing of Calcium Imaging Data , 2016, Neuron.

[41]  Eugenio Culurciello,et al.  Spatially Compact Neural Clusters in the Dorsal Striatum Encode Locomotion Relevant Information , 2016, Neuron.

[42]  L. Paninski,et al.  The Spatiotemporal Organization of the Striatum Encodes Action Space , 2017, Neuron.

[43]  Gordon J. Berman,et al.  Optogenetic dissection of descending behavioral control in Drosophila , 2017, bioRxiv.

[44]  Liam Paninski,et al.  Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data , 2016, eLife.