How merging droplets jump off a superhydrophobic surface: Measurements and model

Timothée Mouterde,1,2,* Thanh-Vinh Nguyen,3,† Hidetoshi Takahashi,4,‡ Christophe Clanet,1,2,§ Isao Shimoyama,3,4 and David Quéré1,2 1Physique et Mécanique des Milieux Hétérogènes, UMR 7636 du CNRS, ESPCI, 75005 Paris, France 2Laboratoire d’Hydrodynamique de l’X, UMR 7646 du CNRS, École Polytechnique, 91128 Palaiseau, France 3Information and Robot Technology Research Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan 4Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan (Received 6 June 2017; published 16 November 2017)

[1]  Ya-Pu Zhao,et al.  Size effect on the coalescence-induced self-propelled droplet , 2011 .

[2]  Nguyen Binh-Khiem,et al.  High-sensitivity triaxial tactile sensor with elastic microstructures pressing on piezoresistive cantilevers , 2014 .

[3]  Yang Cheng,et al.  Microscopic observations of condensation of water on lotus leaves , 2005 .

[4]  Sylvia Yang,et al.  Surface tension propulsion of fungal spores , 2009, Journal of Experimental Biology.

[5]  James J. Feng,et al.  Self-propelled jumping upon drop coalescence on Leidenfrost surfaces , 2014, Journal of Fluid Mechanics.

[6]  Jürgen Rühe,et al.  Wetting of Silicon Nanograss: From Superhydrophilic to Superhydrophobic Surfaces , 2008 .

[7]  James J. Feng,et al.  Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces , 2014, Journal of Fluid Mechanics.

[8]  Thomas J McCarthy,et al.  Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: ultrahydrophobic surfaces are not always water repellant. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[9]  Zhifeng Ren,et al.  Dropwise condensation on superhydrophobic surfaces with two-tier roughness , 2007 .

[10]  Anne Pringle,et al.  The captured launch of a ballistospore. , 2005, Mycologia.

[11]  R. Blossey Self-cleaning surfaces — virtual realities , 2003, Nature materials.

[12]  N. Miljkovic,et al.  Coalescence-induced nanodroplet jumping , 2016 .

[13]  J. Turner,et al.  Mass and momentum transfer on the small scale : how do mushrooms shed their spores ? , 1991 .

[14]  A. H. Reginald Buller,et al.  Researches on Fungi , 2009 .

[15]  Yang Cheng,et al.  Is the lotus leaf superhydrophobic , 2005 .

[16]  P. Hao,et al.  Condensation and jumping relay of droplets on lotus leaf , 2013, 1305.2032.

[17]  S. Yao,et al.  How nanorough is rough enough to make a surface superhydrophobic during water condensation , 2012 .

[18]  E. Wang,et al.  How coalescing droplets jump. , 2014, ACS nano.

[19]  J. Boreyko,et al.  Self-propelled dropwise condensate on superhydrophobic surfaces. , 2009, Physical review letters.

[20]  I. Shimoyama,et al.  Force sensing submicrometer thick cantilevers with ultra-thin piezoresistors by rapid thermal diffusion , 2004 .

[21]  Evelyn N Wang,et al.  Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[22]  Bo Zhang,et al.  Guided Self-Propelled Leaping of Droplets on a Micro-Anisotropic Superhydrophobic Surface. , 2016, Angewandte Chemie.

[23]  Shreyas Chavan,et al.  Enhanced Jumping-Droplet Departure. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[24]  Charles T Black,et al.  Antifogging abilities of model nanotextures. , 2017, Nature materials.