On numerical integration in isogeometric subdivision methods for PDEs on surfaces
暂无分享,去创建一个
Bert Jüttler | Martin Rumpf | Angelos Mantzaflaris | Angelos Mantzaflaris | M. Rumpf | B. Jüttler | R. Perl | Ricardo Perl
[1] Peter Schröder,et al. Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision , 2002, Comput. Aided Des..
[2] Charles T. Loop,et al. Smooth Subdivision Surfaces Based on Triangles , 1987 .
[3] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[4] George M. Turkiyyah,et al. Subdivision-based multilevel methods for large scale engineering simulation of thin shells , 2002, SMA '02.
[5] Carolina Vittoria Beccari,et al. Subdivision surfaces integrated in a CAD system , 2013, Comput. Aided Des..
[6] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[7] Thomas J. Cashman,et al. Beyond Catmull–Clark? A Survey of Advances in Subdivision Surface Methods , 2012, Comput. Graph. Forum.
[8] Jos Stam,et al. Evaluation of Loop Subdivision Surfaces , 2010 .
[9] Bert Jüttler,et al. Matrix Generation in Isogeometric Analysis by Low Rank Tensor Approximation , 2014, Curves and Surfaces.
[10] M. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1978 .
[11] T. Hughes,et al. Efficient quadrature for NURBS-based isogeometric analysis , 2010 .
[12] Janina Kowalski,et al. Application of box splines to the approximation of Sobolev spaces , 1990 .
[13] D. A. Dunavant. High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .
[14] Bert Jüttler,et al. Integration by interpolation and look-up for Galerkin-based isogeometric analysis , 2015 .
[15] Ulrich Reif,et al. Curvature integrability of subdivision surfaces , 2001, Adv. Comput. Math..
[16] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[17] Giancarlo Sangalli,et al. Nonlinear static isogeometric analysis of arbitrarily curved Kirchhoff-Love shells , 2015, International Journal of Mechanical Sciences.
[18] Jörg Peters,et al. A Comparative Study of Several Classical, Discrete Differential and Isogeometric Methods for Solving Poisson's Equation on the Disk , 2014, Axioms.
[19] Bert Jüttler,et al. On the linear independence of (truncated) hierarchical subdivision splines , 2015 .
[20] Jörg Peters,et al. On the Local Linear Independence of Generalized Subdivision Functions , 2006, SIAM J. Numer. Anal..
[21] Denis Zorin,et al. Differentiable parameterization of Catmull-Clark subdivision surfaces , 2004, SGP '04.
[22] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[23] G. Strang,et al. An Analysis of the Finite Element Method , 1974 .
[24] Thomas J. R. Hughes,et al. Reduced Bézier element quadrature rules for quadratic and cubic splines in isogeometric analysis , 2014 .
[25] Konrad Polthier,et al. Koiter's Thin Shells on Catmull-Clark Limit Surfaces , 2011, VMV.
[26] M. Ortiz,et al. Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .
[27] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[28] Hans-Peter Seidel,et al. Ray Tracing of Subdivision Surfaces , 1998, Rendering Techniques.
[29] G. Dziuk. Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .
[30] Ulrich Reif,et al. A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..
[31] Michael Ortiz,et al. Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.
[32] David Salesin,et al. Wavelets for computer graphics: theory and applications , 1996 .