Adaptive Informative Path Planning in Metric Spaces

In contrast to classic robot motion planning, informative path planning (IPP) seeks a path for a robot to sense the world and gain information. In adaptive IPP, the robot chooses the next sensing location using all information acquired so far. The goal is to minimize the robot’s travel cost required to identify a true hypothesis. Adaptive IPP is NP-hard. This paper presents Recursive Adaptive Identification (RAId), a new polynomial-time approximation algorithm for adaptive IPP. We prove a polylogarithmic approximation bound when the robot travels in a metric space. Furthermore, our experiments suggest that RAId is efficient in practice and provides good approximate solutions for several distinct robot planning tasks. Although RAId is designed primarily for noiseless observations, a simple extension allows it to handle some tasks with noisy observations.

[1]  Geoffrey A. Hollinger,et al.  Active Classification: Theory and Application to Underwater Inspection , 2011, ISRR.

[2]  Geoffrey A. Hollinger,et al.  Active planning for underwater inspection and the benefit of adaptivity , 2012, Int. J. Robotics Res..

[3]  Gruia Calinescu,et al.  The Polymatroid Steiner Problems , 2005, J. Comb. Optim..

[4]  L. Kaelbling,et al.  Simultaneous Localization and Grasping as a Belief Space Control Problem , 2011 .

[5]  Andreas Krause,et al.  Optimal Value of Information in Graphical Models , 2009, J. Artif. Intell. Res..

[6]  Nicos Christofides Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem , 1976, Operations Research Forum.

[7]  Joelle Pineau,et al.  Point-based value iteration: An anytime algorithm for POMDPs , 2003, IJCAI.

[8]  Wolfram Burgard,et al.  Active Markov localization for mobile robots , 1998, Robotics Auton. Syst..

[9]  David Hsu,et al.  SARSOP: Efficient Point-Based POMDP Planning by Approximating Optimally Reachable Belief Spaces , 2008, Robotics: Science and Systems.

[10]  Mukesh K. Mohania,et al.  Decision trees for entity identification: approximation algorithms and hardness results , 2007, PODS '07.

[11]  Andreas Krause,et al.  Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization , 2010, J. Artif. Intell. Res..

[12]  J. Vondrák,et al.  Approximating the Stochastic Knapsack Problem: The Benefit of Adaptivity , 2008 .

[13]  Andreas Krause,et al.  Near-Optimal Bayesian Active Learning with Noisy Observations , 2010, NIPS.

[14]  Andreas Krause,et al.  Nonmyopic Adaptive Informative Path Planning for Multiple Robots , 2009, IJCAI.

[15]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[16]  Siddhartha S. Srinivasa,et al.  Efficient touch based localization through submodularity , 2012, 2013 IEEE International Conference on Robotics and Automation.

[17]  John J. Leonard,et al.  Adaptive Mobile Robot Navigation and Mapping , 1999, Int. J. Robotics Res..

[18]  Andreas Krause,et al.  Efficient Informative Sensing using Multiple Robots , 2014, J. Artif. Intell. Res..

[19]  Reid G. Simmons,et al.  Point-Based POMDP Algorithms: Improved Analysis and Implementation , 2005, UAI.

[20]  Geoffrey A. Hollinger,et al.  Efficient Multi-robot Search for a Moving Target , 2009, Int. J. Robotics Res..