Non-Archimedean Ergodic Theory and Pseudorandom Generators

The paper develops techniques in order to construct computer programs, pseudorandom number generators (PRNG), that produce uniformly distributed sequences. The paper exploits an approach that treats standard processor instructions (arithmetic and bitwise logical ones) as continuous functions on the space of 2-adic integers. Within this approach, a PRNG is considered as a dynamical system and is studied by means of the non-Archimedean ergodic theory.

[1]  D. Bosio,et al.  Round-off errors and p-adic numbers , 2000 .

[2]  염흥렬,et al.  [서평]「Applied Cryptography」 , 1997 .

[3]  Vladimir Anashin,et al.  Uniformly distributed sequences in computer algebra or how to construct program generators of random numbers , 1998 .

[4]  R. Rivest Permutation Polynomials Modulo 2w , 2001 .

[5]  W. Gasarch,et al.  The Book Review Column 1 Coverage Untyped Systems Simple Types Recursive Types Higher-order Systems General Impression 3 Organization, and Contents of the Book , 2022 .

[6]  H. Lausch,et al.  Algebra of Polynomials , 1974 .

[7]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[8]  M. D. MacLaren The Art of Computer Programming. Volume 2: Seminumerical Algorithms (Donald E. Knuth) , 1970 .

[9]  Vladimir Anashin,et al.  Non-Archimedean analysis, T-functions, and cryptography , 2006, ArXiv.

[10]  Andrey Bogdanov,et al.  ABC: A New Fast Flexible Stream Cipher , 2005 .

[11]  Igor E. Shparlinski,et al.  Recurrence Sequences , 2003, Mathematical surveys and monographs.

[12]  Robert L. Benedetto p-Adic Dynamics and Sullivan's No Wandering Domains Theorem , 2000, Compositio Mathematica.

[13]  K. Mahler p-adic numbers and their functions , 1981 .

[14]  Vladimir Anashin,et al.  Ergodic Transformations in the Space of p‐Adic Integers , 2006, math/0602083.

[15]  Marcus Nilsson,et al.  P-adic Deterministic and Random Dynamics , 2004 .

[16]  Владимир Сергеевич Анашин,et al.  Равномерно распределенные последовательности целых $p$-адических чисел@@@Uniformly distributed sequences of $p$-adic integers , 2002 .

[17]  Adi Shamir,et al.  A New Class of Invertible Mappings , 2002, CHES.

[18]  Vladimir Anashin,et al.  Uniformly distributed sequences of p-adic integers, II , 2002, math/0209407.

[19]  Franco Vivaldi,et al.  Pseudo-Randomness of Round-Off Errors in Discretized Linear Maps on the Plane , 2003, Int. J. Bifurc. Chaos.

[20]  N. Koblitz p-adic Numbers, p-adic Analysis, and Zeta-Functions , 1977 .

[21]  Mark Goresky,et al.  Feedback shift registers, 2-adic span, and combiners with memory , 1997, Journal of Cryptology.

[22]  A. Katok,et al.  Introduction to the Modern Theory of Dynamical Systems: INTRODUCTION , 1995 .

[23]  Nigel P. Smart,et al.  p-adic Chaos and Random Number Generation , 1998, Exp. Math..

[24]  Vladimir Anashin,et al.  Pseudorandom number generation by p-adic ergodic transformations: an addendum , 2004, ArXiv.

[25]  Robert L. Benedetto,et al.  Hyperbolic maps in p-adic dynamics , 2001, Ergodic Theory and Dynamical Systems.

[26]  Vladimir Anashin Wreath Products in Stream Cipher Design , 2006, ArXiv.

[27]  Andrey Bogdanov,et al.  Increasing the ABC Stream Cipher Period , .

[28]  Shujun Li,et al.  When Chaos Meets Computers , 2004, nlin/0405038.

[29]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[30]  М В Ларин,et al.  Транзитивные полиномиальные преобразования колец вычетов@@@Transitive polynomial transformations of residue class rings , 2002 .

[31]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .