The multilevel mixed finite element discretizations based on local defect-correction for the Stokes eigenvalue problem

Abstract Based on the work of Xu and Zhou (2000), this paper combines mixed finite element method and the local defect-correction technique to establish new local and parallel multilevel discretization schemes for the Stokes eigenvalue problem. Theoretical analysis and numerical experiments show that the computational approach proposed in this paper is simple and easy to carry out in parallel, and can be used to solve singular Stokes eigenvalue problem efficiently. This paper also discusses local error estimates of mixed finite element approximations; it is a new feature here that the estimates apply to the local domains containing corner points.

[1]  Hehu Xie,et al.  Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems , 2009 .

[2]  Aihui Zhou,et al.  Three-Scale Finite Element Discretizations for Quantum Eigenvalue Problems , 2007, SIAM J. Numer. Anal..

[3]  Yinnian He,et al.  Two-level stabilized finite element method for Stokes eigenvalue problem , 2012 .

[4]  Douglas N. Arnold,et al.  Local error estimates for finite element discretization of the Stokes equations , 1995 .

[5]  Jiayu Han,et al.  A new adaptive mixed finite element method based on residual type a posterior error estimates for the Stokes eigenvalue problem , 2015 .

[6]  Lishan Liu,et al.  Positive solutions for a fractional boundary value problem with changing sign nonlinearity , 2012 .

[7]  Monique Dauge,et al.  Stationary Stokes and Navier-Stokes systems on two-or three-dimensional domains with corners , 1989 .

[8]  Hehu Xie,et al.  A multi-level correction scheme for eigenvalue problems , 2011, Math. Comput..

[9]  J. Osborn Approximation of the Eigenvalues of a Nonselfadjoint Operator Arising in the Study of the Stability of Stationary Solutions of the Navier–Stokes Equations , 1976 .

[10]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[11]  Jinchao Xu,et al.  Local and parallel finite element algorithms for the stokes problem , 2008, Numerische Mathematik.

[12]  L. Wahlbin,et al.  Local behavior in finite element methods , 1991 .

[13]  Wei Jiang,et al.  A Two-Scale Discretization Scheme for Mixed Variational Formulation of Eigenvalue Problems , 2012 .

[14]  Martin Vohralík,et al.  A unified framework for a posteriori error estimation for the Stokes problem , 2012, Numerische Mathematik.

[15]  Xiaozhe Hu,et al.  Corrigendum to: "Acceleration of a two-grid method for eigenvalue problems" , 2011, Math. Comput..

[16]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[17]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[18]  Hao Li,et al.  Local and Parallel Finite Element Discretizations for Eigenvalue Problems , 2013, SIAM J. Sci. Comput..

[19]  R. Stenberg Analysis of mixed finite elements methods for the Stokes problem: a unified approach , 1984 .

[20]  Hai Bi,et al.  Two-Grid Finite Element Discretization Schemes Based on Shifted-Inverse Power Method for Elliptic Eigenvalue Problems , 2011, SIAM J. Numer. Anal..

[21]  B. Mercier,et al.  Eigenvalue approximation by mixed and hybrid methods , 1981 .

[22]  R. Kellogg,et al.  A regularity result for the Stokes problem in a convex polygon , 1976 .

[23]  Wei Jiang,et al.  Upper spectral bounds and a posteriori error analysis of several mixed finite element approximations for the Stokes eigenvalue problem , 2013 .

[24]  Roland Glowinski,et al.  An introduction to the mathematical theory of finite elements , 1976 .

[25]  Rolf Stenberg,et al.  A posteriori estimates for the Stokes eigenvalue problem , 2009 .

[26]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[27]  Paul Houston,et al.  Adaptive Discontinuous Galerkin Methods for Eigenvalue Problems Arising in Incompressible Fluid Flows , 2009, SIAM J. Sci. Comput..

[28]  Hehu Xie,et al.  Asymptotic expansions and extrapolations of eigenvalues for the stokes problem by mixed finite element methods , 2008 .

[29]  Yueqiang Shang,et al.  A Parallel Subgrid Stabilized Finite Element Method Based on Two-Grid Discretization for Simulation of 2D/3D Steady Incompressible Flows , 2013, Journal of Scientific Computing.

[30]  Hehu Xie,et al.  Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods , 2009 .

[31]  R. Temam Navier-Stokes Equations , 1977 .

[32]  Q. Lin,et al.  A multilevel correction method for Stokes eigenvalue problems and its applications , 2015 .

[33]  Jinchao Xu,et al.  Local and parallel finite element algorithms based on two-grid discretizations , 2000, Math. Comput..

[34]  Jinchao Xu,et al.  Local and Parallel Finite Element Algorithms for Eigenvalue Problems , 2002 .

[35]  Hehu Xie,et al.  Local and Parallel Finite Element Algorithm Based On Multilevel Discretization for Eigenvalue Problem , 2014, 1401.4969.

[36]  Jinchao Xu,et al.  Local and Parallel Finite Element Algorithms Based on Two-Grid Discretizations for Nonlinear Problems , 2001, Adv. Comput. Math..

[37]  C. Bernardi,et al.  Analysis of some finite elements for the Stokes problem , 1985 .

[38]  F. Brezzi,et al.  On the convergence of eigenvalues for mixed formulations , 1997 .

[39]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..