Spin Polarization Inversion at Benzene-Absorbed Fe4N Surface

We report a first-principle study on electronic structure and simulation of the spin-polarized scanning tunneling microscopy graphic of a benzene/Fe4N interface. Fe4N is a compound ferromagnet suitable for many spintronic applications. We found that, depending on the particular termination schemes and interface configurations, the spin polarization on the benzene surface shows a rich variety of properties ranging from cosine-type oscillation to polarization inversion. Spin-polarization inversion above benzene is resulting from the hybridizations between C pz and the out-of-plane d orbitals of Fe atom.

[1]  S. Sanvito Molecular spintronics: The rise of spinterface science , 2010 .

[2]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[3]  Sidney H. Hu,et al.  Stability studies of iron particle , 1987 .

[4]  Engineering the magnetic properties of hybrid organic-ferromagnetic interfaces by molecular chemical functionalization , 2011 .

[5]  R. Scheuermann,et al.  Direct measurement of the electronic spin diffusion length in a fully functional organic spin valve by low-energy muon spin rotation. , 2009, Nature materials.

[6]  S. Blügel,et al.  Design of the local spin polarization at the organic-ferromagnetic interface. , 2010, Physical review letters.

[7]  Haizhong Guo,et al.  Tunneling magnetoresistance observed in La0.67Sr0.33MnO3/organic molecule/Co junctions , 2007 .

[8]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  Y. Yamauchi,et al.  Magnetic moment enhancement and spin polarization switch of the manganese phthalocyanine molecule on an IrMn(100) surface. , 2014, The Journal of chemical physics.

[10]  Y. Yamauchi,et al.  Electronic Structure and Spin Polarization of Metal (Mn, Fe, Cu) Phthalocyanines on an Fe(100) Surface by First-Principles Calculations , 2012 .

[11]  H. Yamada,et al.  Electronic structure and magnetic properties of CoS2 , 1998 .

[12]  P. Graziosi,et al.  Room-temperature spintronic effects in Alq3-based hybrid devices , 2008 .

[13]  J. Kortus,et al.  Electronic states and the influence of oxygen addition on the optical absorption behaviour of manganese phthalocyanine. , 2012, The Journal of chemical physics.

[14]  S. Heinze,et al.  Atomic-scale inversion of spin polarization at an organic-antiferromagnetic interface , 2013, 1308.0934.

[15]  T. Yokoyama,et al.  Enhancements of Spin and Orbital Magnetic Moments of Submonolayer Co on Cu(001) Studied by X-ray Magnetic Circular Dichroism Using Superconducting Magnet and Liquid He Cryostat , 2008 .

[16]  Edward Sanville,et al.  Improved grid‐based algorithm for Bader charge allocation , 2007, J. Comput. Chem..

[17]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[18]  E. Kita,et al.  Synthesis of Fine Fe4N Powder and Its Magnetic Characteristics , 1982 .

[19]  Unravelling the role of the interface for spin injection into organic semiconductors , 2010, 1005.1826.

[20]  Guang Chen,et al.  Ab initio study of structural and magnetic properties of cubic Fe4N(0 0 1) surface , 2012 .

[21]  S. Heinze,et al.  Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. , 2001, Physical review letters.

[22]  K. Bussmann,et al.  Organic luminescent devices and magnetoelectronics , 2003 .

[23]  R. B. Gangineni,et al.  Low temperature tunneling magnetoresistance on (La,Sr)MnO3∕Co junctions with organic spacer layers , 2008 .

[24]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[25]  M. Cinchetti,et al.  Spin-dependent trapping of electrons at spinterfaces , 2013, Nature Physics.

[26]  Ilaria Bergenti,et al.  Spin routes in organic semiconductors. , 2009, Nature materials.

[27]  I. Kim,et al.  Electronic structure and magnetic properties of Fe4N(001) , 2003 .

[28]  J. Pearson,et al.  Absence of spin transport in the organic semiconductor Al q 3 , 2008 .

[29]  J. Moodera,et al.  Room-temperature tunnel magnetoresistance and spin-polarized tunneling through an organic semiconductor barrier. , 2007, Physical review letters.

[30]  Xiao-hong Xu,et al.  The spin-filter role of the ill-defined layer in FM/Alq3/FM organic spin valve: A first-principle study , 2013 .

[31]  A. Manchon,et al.  Peculiarities of Spin Polarization Inversion at a Thiophene/Cobalt Interface , 2012, 1206.6729.

[32]  G. Shirane,et al.  Mössbauer Study of Hyperfine Fields and Isomer Shifts in Fe 4 N and ( F e , N i ) 4 N , 1962 .

[33]  D. Zahn,et al.  Towards molecular spintronics , 2017, Beilstein journal of nanotechnology.

[34]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[35]  Di Wu,et al.  Giant magnetoresistance in organic spin-valves , 2004, Nature.

[36]  Reversible Spin Polarization at Hybrid Organic–Ferromagnetic Interfaces , 2013 .

[37]  Valentin Dediu,et al.  Room temperature spin polarized injection in organic semiconductor , 2002 .

[38]  H. Bai,et al.  Reactively sputtered epitaxial γ′-Fe4N films: Surface morphology, microstructure, magnetic and electrical transport properties , 2013 .

[39]  B. Amin,et al.  Molecular distortion and charge transfer effects in ZnPc/Cu(111) , 2013, Scientific Reports.

[40]  N. Lorente,et al.  Electronic and magnetic properties of molecule-metal interfaces: Transition-metal phthalocyanines adsorbed on Ag(100) , 2012, 1203.2747.