Low‐frequency electromagnetic exploration for groundwater on Mars

[1] Water with even a small amount of dissolved solids has an electrical conductivity orders of magnitude higher than dry rock and is therefore a near-ideal exploration target on Mars for lowfrequency, diffusive electromagnetic methods. Models of the temperature- and frequency-dependent electrical properties of rock-ice-water mixtures are used to predict the electromagnetic response of the Martian subsurface. Detection of ice is difficult unless it is massively segregated. In contrast, liquid water profoundly affects soundings, and even a small amount of adsorbed water in the cryosphere can be detected. Subcryospheric water is readily distinguishable at frequencies as low as 100 Hz for fresh water to 10 mHz for brines. These responses can be measured using either natural or artificial sources. ULF signals from solar wind and diurnal-heating perturbations of the ionosphere are likely, and disturbances of regional crustal magnetic fields may also be observable. Spherics, or ELF-VLF signals from lightning discharge, would provide optimal soundings; however, lightning may be the least likely of the possible natural sources. Among the active techniques, only the time-domain electromagnetic (TDEM) method can accommodate a closely spaced transmitter and receiver and sound to depths of hundreds of meters or more. A ground- or aircraft-based TDEM system of several kilograms can detect water to a depth of several hundred meters, and a system of tens of kilograms featuring a large, fixed, rover- or ballistically deployed loop can detect water to several kilometers depth. INDEX TERMS: 0694 Electromagnetics: Instrumentation and techniques, 0925 Exploration Geophysics: Magnetic and electrical methods, 6225 Planetology: Solar System Objects: Mars, 5494 Planetology: Solid Surface Planets: Instruments and techniques; KEYWORDS: Mars, water, electromagnetic, magnetotelluric, TDEM

[1]  P. F. Low,et al.  Frost Phenomena on Mars , 1967, Science.

[2]  D. Hillel,et al.  The stability of ground ice in the equatorial region of Mars , 1983 .

[3]  M. Malin,et al.  Evidence for recent groundwater seepage and surface runoff on Mars. , 2000, Science.

[4]  G. Schubert,et al.  A theory for the interpretation of lunar surface magnetometer data , 1969 .

[5]  S. Olsen,et al.  Dormant state of rifting below the Byrd Subglacial Basin, West Antarctica, implied by magnetotelluric (MT) profiling , 1996 .

[6]  Gary R. Olhoeft,et al.  Electrical properties of natural clay permafrost , 1977 .

[7]  D. Muhleman,et al.  Radar Images of Mars , 1991, Science.

[8]  M. Nabighian Quasi-static transient response of a conducting half-space; an approximate representation , 1979 .

[9]  J. D. McNeill,et al.  7. Geological Mapping Using VLF Radio Fields , 1991 .

[10]  A. I. Sukhorukov On the Schumann resonances on Mars , 1991 .

[11]  N. Hoffman White Mars: A New Model for Mars' Surface and Atmosphere Based on CO2 , 2000 .

[12]  Kenneth L. Zonge,et al.  9. Controlled Source Audio-Frequency Magnetotellurics , 1991 .

[13]  Joshua L. Bandfield,et al.  A Global View of Martian Surface Compositions from MGS-TES , 2000 .

[14]  J. Pollack,et al.  Mars - Epochal climate change and volatile history , 1992 .

[15]  Wallace H. Campbell,et al.  Introduction to Geomagnetic Fields , 1971 .

[16]  G. W. Hohmann,et al.  4. Electromagnetic Theory for Geophysical Applications , 1987 .

[17]  Hugh H. Kieffer,et al.  Quasi-periodic climate change on Mars. , 1992 .

[18]  J W Head,et al.  Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. , 2000, Science.

[19]  B. C. Edwards,et al.  Radar Detectability of a Subsurface Ocean on Europa , 1998 .

[20]  Stephen M. Clifford,et al.  A model for the hydrologic and climatic behavior of water on Mars , 1993 .

[21]  Mark Goldman,et al.  Application of the integrated NMR-TDEM method in groundwater exploration in Israel , 1994 .

[22]  H. J. Hagger,et al.  Electromagnetic Waves in Stratified Media , 1996 .

[23]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[24]  M. Mellon,et al.  Recent gullies on Mars and the source of liquid water , 2001 .

[25]  William P. Winn,et al.  Measurements of electric fields in thunderclouds , 1974 .

[26]  Peter B. Weichman,et al.  Surface Nuclear Magnetic Resonance Imaging of Large Systems , 1999 .

[27]  M. Ingham,et al.  Interpretation methods for magnetometer arrays , 1983 .

[28]  G. Buselli,et al.  The effect of near-surface superparamagnetic material on electromagnetic measurements , 1982 .

[29]  G. Olhoeft Effects of water on the electrical properties of planetary regoliths , 1976 .

[30]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[31]  Dale C. Ferguson,et al.  Evidence for Martian electrostatic charging and abrasive wheel wear from the Wheel Abrasion Experiment on the Pathfinder Sojourner rover , 1999 .

[32]  G. Landis,et al.  Detecting electrical activity from Martian dust storms , 1999 .

[33]  S. Ward,et al.  Electromagnetic reflection from a plane‐layered lunar model , 1968 .

[34]  A. R. Tice,et al.  The Unfrozen Interfacial Phase in Frozen Soil Water Systems , 1973 .

[35]  Christopher T. Russell,et al.  Characteristics of the Marslike limit of the Venus‐solar wind interaction , 1987 .

[36]  Duwayne M. Anderson,et al.  PREDICTING UNFROZEN WATER CONTENTS IN FROZEN SOILS FROM SURFACE AREA MEASUREMENTS , 1972 .

[37]  D. Turcotte,et al.  Origin and thermal evolution of Mars. , 1990 .

[38]  Misac N. Nabighian,et al.  Electromagnetic Methods in Applied Geophysics , 1988 .

[39]  D. V. Trushkin,et al.  Surface NMR applied to an electroconductive medium1 , 1995 .

[40]  C. T. Russell,et al.  Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto , 1998, Nature.

[41]  R. Clark,et al.  Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evide , 2000 .

[42]  G. R. Olhoeft,et al.  Magnetic relaxation and the electromagnetic response parameter , 1974 .

[43]  W. B. Hanson,et al.  The Martian ionosphere as observed by the Viking retarding potential analyzers , 1977 .

[44]  Christopher T. Russell,et al.  A Brief History Of Solar-Terrestrial Physics , 1995 .

[45]  Lorraine Schnabel,et al.  Chemical composition of Martian fines , 1982 .

[46]  K. Vozoff,et al.  8. The Magnetotelluric Method , 1991 .

[47]  M. Kivelson Pulsations and Magnetohydrodynamic Waves , 1995 .

[48]  D. Dunlop Theory of the magnetic viscosity of lunar and terrestrial rocks , 1973 .

[49]  Jeffrey R. Johnson,et al.  Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site , 1999 .

[50]  F. Schilling,et al.  The influence of partial melting on the electrical behavior of crustal rocks: laboratory examinations, model calculations and geological interpretations , 2000 .

[51]  H. Lynn,et al.  Detection and analysis of naturally fractured gas reservoirs: Multiazimuth seismic surveys in the Wind River basin, Wyoming , 1999 .

[52]  S. H. Ward AFMAG—AIRBORNE AND GROUND , 1959 .

[53]  G. R. Olhoeft,et al.  Low-frequency electrical properties. , 1985 .

[54]  H Y McSween,et al.  The chemical composition of Martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: preliminary results from the X-ray mode. , 1997, Science.

[55]  T. Wydeven,et al.  Chemical interpretation of Viking Lander 1 life detection experiment , 1978, Nature.

[56]  G. Palacky,et al.  10. Airborne Electromagnetic Methods , 1991 .

[57]  James D. Blacic,et al.  Report on Conceptual Systems Analysis of Drilling Systems for 200-m-Depth Penetration and Sampling of the Martian Subsurface , 2000 .

[58]  William M. Farrell,et al.  Radio atmospheric propagation on Mars and potential remote sensing applications , 1999 .

[59]  J. Wait Mutual electromagnetic coupling of loops over a homogeneous ground; an additional note , 1956 .

[60]  B. Vonnegut,et al.  Electrical Breakdown Caused by Dust Motion in Low-Pressure Atmospheres: Considerations for Mars , 1973, Science.

[61]  V. R. Baker,et al.  Ancient oceans, ice sheets and the hydrological cycle on Mars , 1991, Nature.

[62]  L. Soderblom The composition and mineralogy of the Martian surface from spectroscopic observations: 0.3 μm to 50 μm. , 1992 .

[63]  J. M. Knudsen,et al.  The magnetic properties experiments on Mars Pathfinder , 1996 .

[64]  M. Telkes,et al.  Electrical Properties of Rocks and Minerals , 1942 .

[65]  Christopher T. Russell,et al.  The intrinsic magnetic field and solar-wind interaction of Mars , 1992 .

[66]  F. Fanale,et al.  Global distribution and migration of subsurface ice on mars , 1985 .

[67]  R. Jordan,et al.  Apollo lunar sounder experiment , 1973 .

[68]  James R. Wait,et al.  Mutual Electromagnetic Coupling of Loops Over a Homogeneous Ground , 1955 .

[69]  J. D. Mcneill Use of Electromagnetic Methods for Groundwater Studies , 1990 .

[70]  G. Brass,et al.  Stability of brines on Mars , 1980 .

[71]  Ramesh P. Singh,et al.  Wave-tilt characteristics of TE-mode waves , 1981 .

[72]  J. Moodera,et al.  SPIN-TUNNELING IN FERROMAGNETIC JUNCTIONS , 1999 .