Compositional Quantification of Invariance Feedback Entropy for Networks of Uncertain Control Systems

In the context of uncertain control systems, the notion of invariance feedback entropy (IFE) quantifies the state information required by any controller to render a subset <inline-formula> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula> of the state space invariant. IFE equivalently also quantifies the smallest bit rate, from the coder to the controller in the feedback loop, above which <inline-formula> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula> can be made invariant over a digital noiseless channel. In this letter, we consider discrete-time uncertain control systems described by difference inclusions and establish three results for IFE. First, we show that the IFE of a discrete-time uncertain control system <inline-formula> <tex-math notation="LaTeX">$\Sigma $ </tex-math></inline-formula> and a nonempty set <inline-formula> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula> is upper bounded by the largest possible IFE of <inline-formula> <tex-math notation="LaTeX">$\Sigma $ </tex-math></inline-formula> and any member of any finite partition of <inline-formula> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula>. Second, we consider two uncertain control systems, <inline-formula> <tex-math notation="LaTeX">$\Sigma _{1}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\Sigma _{2}$ </tex-math></inline-formula>, which are identical except for the transition function, such that the behavior of <inline-formula> <tex-math notation="LaTeX">$\Sigma _{1}$ </tex-math></inline-formula> is included within that of <inline-formula> <tex-math notation="LaTeX">$\Sigma _{2}$ </tex-math></inline-formula>. For a given nonempty subset of the state space, we show that the IFE of <inline-formula> <tex-math notation="LaTeX">$\Sigma _{2}$ </tex-math></inline-formula> is larger or equal to the IFE of <inline-formula> <tex-math notation="LaTeX">$\Sigma _{1}$ </tex-math></inline-formula>. Third, we establish an upper bound for the IFE of a network of uncertain control subsystems in terms of the IFEs of smaller subsystems. Further, via an example, we show that the upper bound is tight for some systems. Finally, to illustrate the effectiveness of the results, we compute an upper bound and a lower bound of the IFE of a network of uncertain, linear, discrete-time subsystems describing the evolution of temperature of 100 rooms in a circular building.

[1]  Christoph Kawan,et al.  A note on topological feedback entropy and invariance entropy , 2013, Syst. Control. Lett..

[2]  Guosong Yang,et al.  On Topological Entropy of Switched Linear Systems with Diagonal, Triangular, and General Matrices , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[3]  Fritz Colonius,et al.  Minimal Bit Rates and Entropy for Exponential Stabilization , 2012, SIAM J. Control. Optim..

[4]  Pushpak Jagtap,et al.  Numerical Estimation of Invariance Entropy for Nonlinear Control Systems , 2020, ArXiv.

[5]  Andrey V. Savkin,et al.  Analysis and synthesis of networked control systems: Topological entropy, observability, robustness and optimal control , 2005, Autom..

[6]  R. Bowen Entropy for group endomorphisms and homogeneous spaces , 1971 .

[7]  Sayan Mitra,et al.  Optimal Data Rate for State Estimation of Switched Nonlinear Systems , 2017, HSCC.

[8]  Antoine Girard,et al.  Compositional Abstraction and Safety Synthesis Using Overlapping Symbolic Models , 2017, IEEE Transactions on Automatic Control.

[9]  Majid Zamani,et al.  On the invariance feedback entropy of linear perturbed control systems , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[10]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[11]  Robin J. Evans,et al.  Feedback Control Under Data Rate Constraints: An Overview , 2007, Proceedings of the IEEE.

[12]  Majid Zamani,et al.  Invariance Feedback Entropy of Uncertain Control Systems , 2017, IEEE Transactions on Automatic Control.

[13]  Christoph Kawan,et al.  Invariance Entropy for Control Systems , 2009, SIAM J. Control. Optim..

[14]  Roy L. Adler,et al.  Topological entropy , 2008, Scholarpedia.

[15]  J. Hespanha,et al.  Towards the Control of Linear Systems with Minimum Bit-Rate , 2002 .

[16]  Daniel Liberzon,et al.  Entropy and Minimal Data Rates for State Estimation and Model Detection , 2016, HSCC.

[17]  Sekhar Tatikonda,et al.  Control under communication constraints , 2004, IEEE Transactions on Automatic Control.

[18]  Jean-Charles Delvenne,et al.  Network Entropy and Data Rates Required for Networked Control , 2016, IEEE Transactions on Control of Network Systems.

[19]  Majid Zamani,et al.  Invariance Feedback Entropy of Nondeterministic Control Systems , 2017, HSCC.

[20]  Robin J. Evans,et al.  Topological feedback entropy and Nonlinear stabilization , 2004, IEEE Transactions on Automatic Control.