Generalized q‐Weibull model and the bathtub curve
暂无分享,去创建一个
Edilson Machado de Assis | Ernesto P. Borges | Edilson M. Assis | Silvio Alexandre Beisl Vieira de Melo | S. V. D. Melo
[1] S. Kannan,et al. A diagnostic approach to Weibull‐Weibull stress‐strength model and its generalization , 2011 .
[2] S. Picoli,et al. An improved description of the dielectric breakdown in oxides based on a generalized Weibull distribution , 2006 .
[3] Joanne S. Utley,et al. Using reliability tools in service operations , 2011 .
[4] Edilson Machado de Assis,et al. Reliability Modeling of a Natural Gas Recovery Plant Using q-Weibull Distribution , 2009 .
[5] R. S. Mendes,et al. q-exponential, Weibull, and q-Weibull distributions: an empirical analysis , 2003, cond-mat/0301552.
[6] Hoang Pham,et al. On Recent Generalizations of the Weibull Distribution , 2007, IEEE Transactions on Reliability.
[7] Per Bak,et al. How Nature Works , 1996 .
[8] T. Yamano. Some properties of q-logarithm and q-exponential functions in Tsallis statistics , 2002 .
[9] Constantino Tsallis. Nonextensive Statistical Mechanics, Anomalous Diffusion and Central Limit Theorems , 2004 .
[10] M. Xie,et al. Exponential approximation for maintained Weibull distributed component , 2000 .
[11] C. Tsallis,et al. Nonextensive foundation of Lévy distributions. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[12] Samuel Kotz,et al. q exponential is a Burr distribution , 2006 .
[13] C. Tsallis. Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World , 2009 .
[14] Horst Rinne,et al. The Weibull Distribution: A Handbook , 2008 .
[15] Kiyoyuki Kaito,et al. Random proportional Weibull hazard model for large‐scale information systems , 2011 .
[16] Constantino Tsallis,et al. On a q-Central Limit Theorem Consistent with Nonextensive Statistical Mechanics , 2008 .
[17] I. W. Burr. Cumulative Frequency Functions , 1942 .
[18] C. Tsallis,et al. Escort mean values and the characterization of power-law-decaying probability densities , 2008, 0802.1698.
[19] C. Tsallis,et al. Statistical-mechanical foundation of the ubiquity of Lévy distributions in Nature. , 1995, Physical review letters.
[20] W. Weibull. A Statistical Distribution Function of Wide Applicability , 1951 .
[21] C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics , 1988 .