Anisotropic fractional viscoelastic constitutive models for human descending thoracic aortas.

The generalized fractional Maxwell model, formulated for hyperelastic material within the framework of the nonlinear viscoelasticity with internal variables, is applied to identify viscoelastic constitutive equations from layer-specific experimental data obtained by uniaxial harmonic loading of ex-vivo human descending thoracic aortas. The constitutive parameters are identified by using a genetic algorithm for the optimal fitting of the experimental data. The accuracy of the fitted fractional model is compared to the fitted integer order model with the same number of Maxwell elements. The formulation of an original strain energy density function for anisotropic nonlinear viscoelasticity is introduced and constitutive parameters are obtained from the experiments.

[1]  Gerardo W Flintsch,et al.  Fractional viscoelastic models: master curve construction, interconversion, and numerical approximation , 2012, Rheologica Acta.

[2]  Victor H Barocas,et al.  Emergent structure-dependent relaxation spectra in viscoelastic fiber networks in extension. , 2019, Acta biomaterialia.

[3]  Damian Craiem,et al.  FRACTIONAL CALCULUS APPLIED TO MODEL ARTERIAL VISCOELASTICITY , 2008 .

[4]  G. Holzapfel,et al.  Anisotropic finite strain viscoelasticity: Constitutive modeling and finite element implementation , 2019, Journal of the Mechanics and Physics of Solids.

[5]  M. Amabili,et al.  Nonlinear higher-order shell theory for incompressible biological hyperelastic materials , 2019, Computer Methods in Applied Mechanics and Engineering.

[6]  Marco Amabili,et al.  Nonlinear Mechanics of Shells and Plates in Composite, Soft and Biological Materials , 2018 .

[7]  M. Amabili,et al.  Layer-specific hyperelastic and viscoelastic characterization of human descending thoracic aortas. , 2019, Journal of the mechanical behavior of biomedical materials.

[8]  Paris Perdikaris,et al.  Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms , 2016, J. Comput. Phys..

[9]  R. Ogden,et al.  Hyperelastic modelling of arterial layers with distributed collagen fibre orientations , 2006, Journal of The Royal Society Interface.

[10]  R. Armentano,et al.  Modeling the arterial wall mechanics using a novel high-order viscoelastic fractional element , 2015 .

[11]  L. Huet,et al.  Hyper-Viscoelastic Behavior of Healthy Abdominal Aorta , 2016 .

[12]  H. Yasuda,et al.  In vivo viscoelastic behavior in the human aorta. , 1990, Circulation research.

[13]  A. Ibrahimbegovic Nonlinear Solid Mechanics , 2009 .

[14]  A Noordergraaf,et al.  Arterial viscoelasticity: a generalized model. Effect on input impedance and wave travel in the systematic tree. , 1970, Journal of biomechanics.

[15]  Y. Fung,et al.  Biomechanics: Mechanical Properties of Living Tissues , 1981 .

[16]  G. Holzapfel,et al.  A structural model for the viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis , 2002 .

[17]  Gerhard A Holzapfel,et al.  Modelling non-symmetric collagen fibre dispersion in arterial walls , 2015, Journal of The Royal Society Interface.

[18]  M. Amabili,et al.  Nonlinear model of human descending thoracic aortic segments with residual stresses , 2018, Biomechanics and Modeling in Mechanobiology.

[19]  Mette S. Olufsen,et al.  Analysis of Viscoelastic Wall Properties in Ovine Arteries , 2009, IEEE Transactions on Biomedical Engineering.

[20]  Viscoelastic characterization of woven Dacron for aortic grafts by using direction-dependent quasi-linear viscoelasticity. , 2018, Journal of the mechanical behavior of biomedical materials.

[21]  Peter Regitnig,et al.  Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening. , 2012, Journal of the mechanical behavior of biomedical materials.

[22]  Mette S. Olufsen,et al.  Linear and Nonlinear Viscoelastic Modeling of Aorta and Carotid Pressure–Area Dynamics Under In Vivo and Ex Vivo Conditions , 2011, Annals of Biomedical Engineering.

[23]  Damian Craiem,et al.  Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries , 2008, Physics in medicine and biology.

[24]  Igor M. Sokolov,et al.  Physics of Fractal Operators , 2003 .

[25]  Mark Butlin,et al.  Arterial viscoelasticity: role in the dependency of pulse wave velocity on heart rate in conduit arteries. , 2017, American journal of physiology. Heart and circulatory physiology.

[26]  Damian Craiem,et al.  A fractional derivative model to describe arterial viscoelasticity. , 2007, Biorheology.

[27]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[28]  M. Amabili,et al.  Experiments on dynamic behaviour of a Dacron aortic graft in a mock circulatory loop. , 2019, Journal of biomechanics.

[29]  R. Armentano,et al.  Arterial wall mechanics in conscious dogs. Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior. , 1995, Circulation research.

[30]  D. Bergel,et al.  The dynamic elastic properties of the arterial wall , 1961, The Journal of physiology.

[31]  G. Holzapfel,et al.  A Mechanobiological model for damage-induced growth in arterial tissue with application to in-stent restenosis , 2017 .