Constraints of zircon U-Pb, molybdenite Re-Os and muscovite 40Ar-39Ar ages on the formation of the Chaobuleng skarn Fe-Zn deposit, NE China

[1]  Scheelite U-Pb geochronology and trace element geochemistry fingerprint W mineralization in the giant Zhuxi W deposit, South China , 2022, American Mineralogist.

[2]  D. Zhai Fluid-rock interactions leading to the formation of the epithermal Ag-Pb-Zn veins: A perspective of thermodynamic modeling , 2022, Fundamental Research.

[3]  A. Williams-Jones,et al.  Trace element and isotopic (S, Pb) constraints on the formation of the giant Chalukou porphyry Mo deposit, NE China , 2022, American Mineralogist.

[4]  A. Williams-Jones,et al.  The geochemistry and geochronology of Permian granitoids from central Inner Mongolia, NE China: Petrogenesis and tectonic implications , 2021, Lithos.

[5]  Dengfeng Li,et al.  In situ LA-ICP-MS U-Pb geochronology and geochemical characteristics of garnet from the Zhuxi skarn W-Cu deposit, South China , 2021, Ore Geology Reviews.

[6]  Dengfeng Li,et al.  The geochronology of the Haobugao skarn Zn-Pb deposit (NE China) using garnet LA-ICP-MS U-Pb dating , 2021, Ore Geology Reviews.

[7]  He Yang,et al.  Fluid evolution and ore genesis of the Chaobuleng skarn Fe Zn polymetallic deposit, Northeast China: Evidence from fluid inclusions, C O S Pb isotopes, and geochronology , 2021 .

[8]  Jinwen Li,et al.  Geochronology, geochemistry, and Sr–Nd–Pb–Hf isotopes of ore-related diorites in the Erdaohe Pb-Zn-Ag deposit, Great Hinggan Range, NE China: Constraints on timing, petrogenesis and tectonic setting , 2021 .

[9]  A. Williams-Jones,et al.  The Giant Chalukou Porphyry Mo Deposit, Northeast China: The Product of a Short-Lived, High Flux Mineralizing Event , 2021 .

[10]  A. Peskov,et al.  Paleozoic tectonic evolution of the eastern Central Asian Orogenic Belt in NE China , 2021, China Geology.

[11]  M. Ren,et al.  Origin of the Oligocene Tuolangla porphyry-skarn Cu-W-Mo deposit in Lhasa terrane, southern Tibet , 2020 .

[12]  Li Zhang,et al.  Late Mesozoic tectonic evolution of the southern Great Xing'an Range, NE China: Evidence from whole-rock geochemistry, and zircon U Pb ages and Hf isotopes from volcanic rocks , 2020 .

[13]  L. Bagas,et al.  Element behaviour during interaction of magma and fluid: A case study of Chamuhan Granite, and implications on the genesis of W – Mo mineralisation , 2019, Lithos.

[14]  He Yang,et al.  Genesis and tectonic setting of Shenshan Fe–Cu deposit in Inner Mongolia, Northeast China: Constraints from geochemistry, U–Pb and Re–Os geochronology, and Hf isotopes , 2019, Ore Geology Reviews.

[15]  A. Williams-Jones,et al.  Evaluating the Use of the Molybdenite Re-Os Chronometer in Dating Gold Mineralization: Evidence from the Haigou Deposit, Northeastern China , 2019, Economic Geology.

[16]  P. Li,et al.  The Genesis of the Giant Shuangjianzishan Epithermal Ag-Pb-Zn Deposit, Inner Mongolia, Northeastern China , 2019 .

[17]  Jiajun Liu,et al.  A magmatic-hydrothermal origin for Ag-Pb-Zn vein formation at the Bianjiadayuan deposit, inner Mongolia, NE China: Evidences from fluid inclusion, stable (C-H-O) and noble gas isotope studies , 2018, Ore Geology Reviews.

[18]  Wei Wei,et al.  Origin of the Haobugao skarn Fe-Zn polymetallic deposit, Southern Great xing’an range, NE China: Geochronological, geochemical, and Sr-Nd-Pb isotopic constraints , 2018 .

[19]  F. Yuan,et al.  Data for: S isotopic geochemistry, zircon and cassiterite U–Pb geochronology of the Haobugao Sn polymetallic deposit, southern Great Xing'an Range, NE China , 2018 .

[20]  N. Cook,et al.  Mineralogical, textural, sulfur and lead isotope constraints on the origin of Ag-Pb-Zn mineralization at Bianjiadayuan, Inner Mongolia, NE China , 2018, Mineralium Deposita.

[21]  A. Williams-Jones,et al.  The genesis of the Hashitu porphyry molybdenum deposit, Inner Mongolia, NE China: constraints from mineralogical, fluid inclusion, and multiple isotope (H, O, S, Mo, Pb) studies , 2018, Mineralium Deposita.

[22]  Jiajun Liu,et al.  U-Pb, Re-Os, AND 40Ar/39Ar GEOCHRONOLOGY OF PORPHYRY Sn ± Cu ± Mo AND POLYMETALLIC (Ag-Pb-Zn-Cu) VEIN MINERALIZATION AT BIANJIADAYUAN, INNER MONGOLIA, NORTHEAST CHINA: IMPLICATIONS FOR DISCRETE MINERALIZATION EVENTS , 2017 .

[23]  L. Bagas,et al.  Two mineralization events in the Baiyinnuoer Zn-Pb deposit in Inner Mongolia, China: Evidence from field observations, S-Pb isotopic compositions and U-Pb zircon ages , 2017 .

[24]  Wencan Liu,et al.  The relationship between magma and mineralization in Chaobuleng iron polymetallic deposit, Inner Mongolia , 2017 .

[25]  Z. Chang,et al.  Regional Metallogeny of Mo-Bearing Deposits in Northeastern China, with New Re-Os Dates of Porphyry Mo Deposits in the Northern Xilamulun District , 2016 .

[26]  L. Bagas,et al.  Zircon U–Pb ages and Sr–Nd–Hf isotopes of the highly fractionated granite with tetrad REE patterns in the Shamai tungsten deposit in eastern Inner Mongolia, China: Implications for the timing of mineralization and ore genesis , 2016 .

[27]  L. Bagas,et al.  The genesis of metal zonation in the Weilasituo and Bairendaba Ag-Zn-Pb-Cu-(Sn-W) deposits in the shallow part of a porphyry Sn-W-Rb system, Inner Mongolia, China , 2016 .

[28]  Wencan Liu,et al.  Early Paleozoic magmatic history of central Inner Mongolia, China: implications for the tectonic evolution of the Southeast Central Asian Orogenic Belt , 2016, International Journal of Earth Sciences.

[29]  Zhenhua Zhou,et al.  Geochronology and geochemistry constraints of the Early Cretaceous Taibudai porphyry Cu deposit, northeast China, and its tectonic significance , 2015 .

[30]  Zhenhua Zhou,et al.  Late Mesozoic metallogeny and intracontinental magmatism, southern Great Xing'an Range, northeastern China , 2015 .

[31]  Zhilong Huang,et al.  GEOLOGY, Re-Os AGES, SULFUR AND LEAD ISOTOPES OF THE DIYANQINAMU PORPHYRY Mo DEPOSIT, INNER MONGOLIA, NE CHINA , 2015 .

[32]  Qingdong Zeng,et al.  Porphyry molybdenum deposits in the Tianshan–Xingmeng orogenic belt, northern China , 2015, International Journal of Earth Sciences.

[33]  Yongqiang Yang,et al.  S–Pb isotopic geochemistry, U–Pb and Re–Os geochronology of the Huanggangliang Fe–Sn deposit, Inner Mongolia, NE China , 2014 .

[34]  L. Su,et al.  Origin of oscillatory zoned garnets from the Xieertala Fe-Zn skarn deposit, northern China: In situ LA-ICP-MS evidence , 2014 .

[35]  Gongwen Wang,et al.  Zircon U–Pb and molybdenite Re–Os geochronology, and whole-rock geochemistry of the Hashitu molybdenum deposit and host granitoids, Inner Mongolia, NE China , 2014 .

[36]  Chao Wang,et al.  Ore Genesis and Hydrothermal Evolution of the Baiyinnuo’er Zinc-Lead Skarn Deposit, Northeast China: Evidence from Isotopes (S, Pb) and Fluid Inclusions , 2013 .

[37]  Mlr Key,et al.  H-O-S-Pb isotopic components of the Budunhua Cu deposit in the middlesouth part of the Da Hinggan Mountains and their implications for the oreforming process , 2012 .

[38]  S. Wilde,et al.  Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China: Implications for subduction-induced delamination , 2010 .

[39]  Z. Zhen,et al.  Molybdenite Re-Os ages of Huanggang skarn Sn-Fe deposit and their geological significance,Inner Mongolia , 2010 .

[40]  Xu Li SHRIMP dating of medium-coarse-grained granite in Chaobuleng iron deposit, Dong Ujimqin Banner, Inner Mongolia , 2010 .

[41]  Q. Zhang,et al.  Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (II): Insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province , 2009 .

[42]  L. Meinert,et al.  The Empire Cu-Zn Mine, Idaho: Exploration Implications of Unusual Skarn Features Related to High Fluorine Activity , 2008 .

[43]  R. Creaser,et al.  Assessment of the 187Re decay constant by cross calibration of Re–Os molybdenite and U–Pb zircon chronometers in magmatic ore systems , 2007 .

[44]  G. Dipple,et al.  World Skarn Deposits , 2005 .

[45]  B. Jahn The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic , 2004, Geological Society, London, Special Publications.

[46]  B. Windley,et al.  Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt , 2003 .

[47]  R. Korsch,et al.  TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology , 2003 .

[48]  K. Ludwig User's Manual for Isoplot 3.00 - A Geochronological Toolkit for Microsoft Excel , 2003 .

[49]  S. Wilde,et al.  A-type granites in northeastern China: age and geochemical constraints on their petrogenesis , 2002 .

[50]  Anthony A. P. Koppers,et al.  ArArCALC-software for 40 Ar/ 39 Ar age calculations , 2002 .

[51]  J. Morgan,et al.  Re-Os Ages of Group IIA, IIIA, IVA, and IVB Iron Meteorites , 1996, Science.

[52]  W. Griffin,et al.  THREE NATURAL ZIRCON STANDARDS FOR U‐TH‐PB, LU‐HF, TRACE ELEMENT AND REE ANALYSES , 1995 .

[53]  R. Steiger,et al.  Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology , 1977 .

[54]  Derek York,et al.  Least squares fitting of a straight line with correlated errors , 1968 .