Cryo-EM structure of 5-HT3A receptor in its resting conformation

[1]  E. Pardon,et al.  Structural basis for GABAA receptor potentiation by neurosteroids , 2017, Nature Structural & Molecular Biology.

[2]  S. Chakrapani,et al.  Crystal structure and dynamics of a lipid-induced potential desensitized-state of a pentameric ligand-gated channel , 2017, eLife.

[3]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[4]  Jue Chen,et al.  Atomic Structure of the Cystic Fibrosis Transmembrane Conductance Regulator , 2016, Cell.

[5]  C. L. Morales-Pérez,et al.  X-ray structure of the human alpha 4 beta 2 nicotinic receptor. , 2016 .

[6]  C. L. Morales-Pérez,et al.  X-ray structure of the human α4β2 nicotinic receptor , 2016, Nature.

[7]  E. Gouaux,et al.  Glycine receptor mechanism elucidated by electron cryo-microscopy , 2015, Nature.

[8]  C. Ulens,et al.  Varenicline Interactions at the 5-HT3 Receptor Ligand Binding Site are Revealed by 5-HTBP , 2015, ACS chemical neuroscience.

[9]  P. Biggin,et al.  Agonist and antagonist binding in human glycine receptors. , 2014, Biochemistry.

[10]  Surajit Banerjee,et al.  X-ray structures of GluCl in apo states reveal a gating mechanism of Cys-loop receptors , 2014, Nature.

[11]  T. Tomizaki,et al.  X-ray structure of the mouse serotonin 5-HT3 receptor , 2014, Nature.

[12]  A. R. Aricescu,et al.  Crystal structure of a human GABAA receptor , 2014, Nature.

[13]  J. Changeux,et al.  Crystal structures of a pentameric ligand-gated ion channel provide a mechanism for activation , 2013, Proceedings of the National Academy of Sciences.

[14]  H. Tagare,et al.  The Local Resolution of Cryo-EM Density Maps , 2013, Nature Methods.

[15]  J. Baenziger,et al.  A distinct mechanism for activating uncoupled nicotinic acetylcholine receptors. , 2013, Nature chemical biology.

[16]  J. A. Peters,et al.  Mutagenic Analysis of the Intracellular Portals of the Human 5-HT3A Receptor , 2013, The Journal of Biological Chemistry.

[17]  S. Kato Role of serotonin 5-HT₃ receptors in intestinal inflammation. , 2013, Biological & pharmaceutical bulletin.

[18]  J. A. Peters,et al.  The Minimum M3-M4 Loop Length of Neurotransmitter-activated Pentameric Receptors Is Critical for the Structural Integrity of Cytoplasmic Portals* , 2013, The Journal of Biological Chemistry.

[19]  J. A. van Hooft,et al.  The serotonin 5-HT3 receptor: a novel neurodevelopmental target , 2013, Front. Cell. Neurosci..

[20]  P. Koehl,et al.  Structural basis for ion permeation mechanism in pentameric ligand-gated ion channels , 2013, The EMBO journal.

[21]  A. J. Thompson,et al.  5-HT3 Receptors , 2012, The Journal of Biological Chemistry.

[22]  Eric Gouaux,et al.  Principles of activation and permeation in an anion-selective Cys-loop receptor , 2011, Nature.

[23]  J. A. Peters,et al.  Rings of Charge within the Extracellular Vestibule Influence Ion Permeation of the 5-HT3A Receptor* , 2011, The Journal of Biological Chemistry.

[24]  A. Smit,et al.  A Structural and Mutagenic Blueprint for Molecular Recognition of Strychnine and d-Tubocurarine by Different Cys-Loop Receptors , 2011, PLoS biology.

[25]  R. Spiller Targeting the 5-HT(3) receptor in the treatment of irritable bowel syndrome. , 2011, Current opinion in pharmacology.

[26]  J. Nortier,et al.  Anti-emetic drugs in oncology: pharmacology and individualization by pharmacogenetics , 2011, International Journal of Clinical Pharmacy.

[27]  Sung-Hou Kim,et al.  Water polygons in high‐resolution protein crystal structures , 2009, Protein science : a publication of the Protein Society.

[28]  J. Lynch,et al.  Ligand-specific Conformational Changes in the α1 Glycine Receptor Ligand-binding Domain* , 2009, The Journal of Biological Chemistry.

[29]  S. Sine,et al.  Nicotinic Receptor Interloop Proline Anchors β1-β2 and Cys loops in Coupling Agonist Binding to Channel Gating , 2008, The Journal of general physiology.

[30]  W. Wadman,et al.  On the voltage‐dependent Ca2+ block of serotonin 5‐HT3 receptors: a critical role of intracellular phosphates , 2008, The Journal of physiology.

[31]  R. Dutzler,et al.  X-ray structure of a prokaryotic pentameric ligand-gated ion channel , 2008, Nature.

[32]  C. Connolly Trafficking of 5-HT3 and GABAA receptors (Review) , 2008, Molecular membrane biology.

[33]  P. Taylor,et al.  Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations , 2005, The EMBO journal.

[34]  N. Unwin,et al.  Refined structure of the nicotinic acetylcholine receptor at 4A resolution. , 2005, Journal of molecular biology.

[35]  N. Barnes,et al.  Identification and importance of N-glycosylation of the human 5-hydroxytryptamine3A receptor subunit. , 2004, Biochemical pharmacology.

[36]  M. Gershon Review article: serotonin receptors and transporters — roles in normal and abnormal gastrointestinal motility , 2004, Alimentary pharmacology & therapeutics.

[37]  E. Kirkness,et al.  The 5-hydroxytryptamine type 3 (5-HT3) receptor reveals a novel determinant of single-channel conductance. , 2004, Biochemical Society transactions.

[38]  B. Costall,et al.  5-HT3 receptors. , 2004, Current drug targets. CNS and neurological disorders.

[39]  A. J. Thompson,et al.  A single ring of charged amino acids at one end of the pore can control ion selectivity in the 5‐HT3 receptor , 2003, British journal of pharmacology.

[40]  N. Grigorieff,et al.  Accurate determination of local defocus and specimen tilt in electron microscopy. , 2003, Journal of structural biology.

[41]  J. Kapeller,et al.  Cloning, physical mapping and expression analysis of the human 5-HT3 serotonin receptor-like genes HTR3C, HTR3D and HTR3E. , 2003, Gene.

[42]  D. S. Weiss,et al.  Site-specific fluorescence reveals distinct structural changes with GABA receptor activation and antagonism , 2002, Nature Neuroscience.

[43]  S. Panicker,et al.  Evidence for a Centrally Located Gate in the Pore of a Serotonin-Gated Ion Channel , 2002, The Journal of Neuroscience.

[44]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[45]  T. Sixma,et al.  Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors , 2001, Nature.

[46]  A. Auerbach,et al.  The Extracellular Linker of Muscle Acetylcholine Receptor Channels Is a Gating Control Element , 2000, The Journal of general physiology.

[47]  J Pulokas,et al.  Leginon: a system for fully automated acquisition of 1000 electron micrographs a day. , 1999, Ultramicroscopy.

[48]  John A. Peters,et al.  The 5-HT3B subunit is a major determinant of serotonin-receptor function , 1999, Nature.

[49]  D. A. Dougherty,et al.  From ab initio quantum mechanics to molecular neurobiology: a cation-pi binding site in the nicotinic receptor. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[50]  B. Wallace,et al.  HOLE: a program for the analysis of the pore dimensions of ion channel structural models. , 1996, Journal of molecular graphics.

[51]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[52]  R. Myers,et al.  Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. , 1991, Science.

[53]  D. Wong,et al.  Localization of 5-HT3 receptors in the rat brain using [3H]LY278584 , 1991, Brain Research.

[54]  P. Hargrave,et al.  Localization of binding sites for carboxyl terminal specific anti-rhodopsin monoclonal antibodies using synthetic peptides. , 1984, Biochemistry.

[55]  Yizhak Marcus,et al.  Ionic radii in aqueous solutions , 1983 .

[56]  S H W Scheres,et al.  Processing of Structurally Heterogeneous Cryo-EM Data in RELION. , 2016, Methods in enzymology.

[57]  P. Taylor,et al.  On the Origin of Ion Selectivity in the Cys-Loop Receptor Family , 2009, Journal of Molecular Neuroscience.

[58]  Wen Jiang,et al.  EMAN2: an extensible image processing suite for electron microscopy. , 2007, Journal of structural biology.

[59]  Bernhard Rupp,et al.  Correspondence e-mail: , 2000 .

[60]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .