Calculations of magnetically induced current densities: theory and applications

A review of computational studies of magnetically induced current density susceptibilities in molecules and their relation to experiments is presented. The history of the investigation of magnetically induced current densities and ring currents in molecules is briefly covered. The theoretical development of relativistic and nonrelativistic computational approaches for computing current densities in closed‐shell and open‐shell molecules is discussed and different state of the art methods to interpret calculated current densities are reviewed. Numerical integration approaches to assess global, semilocal, and local aromatic properties of multiring molecules are presented and demonstrated on free‐base trans‐porphyrin. We show that numerical integration of the current density combined with guiding visualization techniques of the current flow is a powerful tool for studies of the aromatic character of complicated molecular structures such as annelated aromatic and antiaromatic rings. Representative applications are reported illustrating the importance of careful current density studies for organic and inorganic chemistry. The applications include calculations of current densities and current strengths for aromatic, antiaromatic, and nonaromatic molecules of different kind. Current densities in spherical, cylindrical, tetrahedral, toroidal, and Möbius‐twisted molecules are discussed. The aromatic character, current pathways, and current strengths of porphyrins are briefly highlighted. Aromatic properties of inorganic molecules are assessed based on current density calculations. Current strengths as a noninvasive tool to determine strengths of hydrogen bonds are discussed. WIREs Comput Mol Sci 2016, 6:639–678. doi: 10.1002/wcms.1270

[1]  Theoretical investigation of photoelectron spectra and magnetically induced current densities in ring-shaped transition-metal oxides , 2011 .

[2]  P. Lazzeretti Topological definition of ring currents. , 2016, Physical chemistry chemical physics : PCCP.

[3]  J. Aihara,et al.  Raison d'être of apparently antiaromatic 1,2-dithiin derivatives in nature , 1999 .

[4]  Fabio Pichierri,et al.  Calculation of absorption and emission spectra of [n]cycloparaphenylenes: the reason for the large Stokes shift. , 2010, Physical chemistry chemical physics : PCCP.

[5]  Jonathan F. Lovell,et al.  Emerging applications of porphyrins in photomedicine , 2015, Front. Phys..

[6]  M. J. Hayes,et al.  Towards hydrocarbon analogues of the porphyrins: synthesis and spectroscopic characterization of the first dicarbaporphyrin† , 1999 .

[7]  S. Radenković,et al.  Ring currents in polycyclic sodium clusters. , 2011, The journal of physical chemistry. A.

[8]  A. Soncini,et al.  Molecular response to a time-independent non-uniform magnetic-field , 2004 .

[9]  R. Hoffmann The Many Guises of Aromaticity , 2015 .

[10]  E. Heilbronner,et al.  Hűckel molecular orbitals of Mőbius-type conformations of annulenes , 1964 .

[11]  G. Seifert,et al.  The magnetic shielding function of molecules and pi-electron delocalization. , 2005, Chemical reviews.

[12]  R. C. Haddon,et al.  Icosahedral C60: an aromatic molecule with a vanishingly small ring current magnetic susceptibility , 1987, Nature.

[13]  M. Hoffmann,et al.  A Paramagnetic Bonding Mechanism for Diatomics in Strong Magnetic Fields , 2012, Science.

[14]  Yosuke Yamamoto,et al.  Selective synthesis of [12]cycloparaphenylene. , 2009, Angewandte Chemie.

[15]  P. Lazzeretti,et al.  Relative Weights of σ and π Ring Currents in a Few Simple Monocycles. , 2010, Journal of Chemical Theory and Computation.

[16]  H. F. Hameka On the nuclear magnetic shielding in the hydrogen molecule , 1958 .

[17]  Linus Pauling,et al.  The Diamagnetic Anisotropy of Aromatic Molecules , 1936 .

[18]  Massimo Malagoli,et al.  On CHF calculations of second-order magnetic properties using the method of continuous transformation of origin of the current density , 1994 .

[19]  R. King,et al.  Spherical aromaticity: recent work on fullerenes, polyhedral boranes, and related structures. , 2005, Chemical reviews.

[20]  A. Soncini,et al.  Magnetic response of dithiin molecules: is there anti-aromaticity in nature? , 2003 .

[21]  S. Winstein,et al.  HOMO-AROMATIC STRUCTURES , 1959 .

[22]  Francesco Mauri,et al.  All-electron magnetic response with pseudopotentials: NMR chemical shifts , 2001 .

[23]  Arnout Ceulemans,et al.  Symmetry extensions of Euler's theorem for polyhedral, toroidal and benzenoid molecules , 1995 .

[24]  A. Soncini Charge and Spin Currents in Open-Shell Molecules:  A Unified Description of NMR and EPR Observables. , 2007, Journal of chemical theory and computation.

[25]  F. B. Fuller The writhing number of a space curve. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[26]  H. Hosoya,et al.  Spherical Aromaticity of Buckminsterfullerene , 1988 .

[27]  Athanassios C. Tsipis,et al.  Diagnosis of magnetoresponsive aromatic and antiaromatic zones in three‐membered rings of d‐ and f‐block elements , 2009, J. Comput. Chem..

[28]  H. Vach Symmetric and irregular aromatic silicon nanoclusters , 2014 .

[29]  Todd A. Keith,et al.  Topological analysis of magnetically induced molecular current distributions , 1993 .

[30]  M. Malagoli,et al.  Coupled Hartree–Fock calculations of origin‐independent magnetic properties of benzene molecule , 1995 .

[31]  C. Bertozzi,et al.  Synthesis, Characterization, and Theory of [9]-, [12]-, and [18]Cycloparaphenylene: Carbon Nanohoop Structures , 2008, Journal of the American Chemical Society.

[32]  Ville R. I. Kaila,et al.  Hydrogen-bond strengths by magnetically induced currents. , 2011, Physical chemistry chemical physics : PCCP.

[33]  Iannis Dandouras,et al.  Ring Currents I , 2016 .

[34]  P. Schleyer,et al.  Global and Local Aromaticity in Porphyrins: An Analysis Based on Molecular Geometries and Nucleus‐Independent Chemical Shifts , 1998 .

[35]  A. Katritzky,et al.  To what extent can aromaticity be defined uniquely? , 2002, The Journal of organic chemistry.

[36]  Mikael P. Johansson,et al.  On the strong ring currents in B20 and neighboring boron toroids , 2009 .

[37]  A. Soncini,et al.  Invariance of magnetic-field induced current density to a continuous transformation of the origin of the coordinate system , 2006 .

[38]  Toshiyasu Suzuki,et al.  Selective and random syntheses of [n]cycloparaphenylenes (n=8-13) and size dependence of their electronic properties. , 2011, Journal of the American Chemical Society.

[39]  R. Havenith,et al.  Can the current density map topology be extracted from the nucleus independent chemical shifts? , 2016, Physical chemistry chemical physics : PCCP.

[40]  Radovan Bast,et al.  4-Component relativistic magnetically induced current density using London atomic orbitals. , 2011, Physical chemistry chemical physics : PCCP.

[41]  Arindam Banerjee,et al.  Submitted for publication , 1981 .

[42]  R. Ditchfield,et al.  Self-consistent perturbation theory of diamagnetism , 1974 .

[43]  J. Reyn,et al.  Classification and description of the singular points of a system of three linear differential equations , 1964 .

[44]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[45]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[46]  P. Fowler,et al.  Ipsocentric and allocentric methods of mapping induced current density , 2004 .

[47]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[48]  P. Schleyer,et al.  Homobenzene: homoaromaticity and homoantiaromaticity in cycloheptatrienes. , 2008, The journal of physical chemistry. A.

[49]  D. Sundholm,et al.  The aromatic character of thienopyrrole-modified 20π-electron porphyrinoids. , 2014, Physical chemistry chemical physics : PCCP.

[50]  R. Bader,et al.  Quantum topology of molecular charge distributions. III. The mechanics of an atom in a molecule , 1980 .

[51]  Todd A. Keith,et al.  Calculation of magnetic response properties using atoms in molecules , 1992 .

[52]  Lai‐Sheng Wang,et al.  Experimental and computational studies of alkali-metal coinage-metal clusters. , 2006, The journal of physical chemistry. A.

[53]  R. Ahlrichs,et al.  Efficient molecular numerical integration schemes , 1995 .

[54]  Hong-Xing Zhang,et al.  Theoretical analysis on magnetic properties of conjugated organic molecules containing borepin , 2013, Chemical Research in Chinese Universities.

[55]  Alán Aspuru-Guzik,et al.  Advances in molecular quantum chemistry contained in the Q-Chem 4 program package , 2014, Molecular Physics.

[56]  P. Fowler,et al.  Angular momentum and spectral decomposition of ring currents: aromaticity and the annulene model , 2005 .

[57]  Christian Dahlstrand,et al.  Excited state aromaticity and antiaromaticity: opportunities for photophysical and photochemical rationalizations. , 2014, Chemical reviews.

[58]  Elfi Kraka,et al.  Homotropenylium Cation: Structure, Stability, and Magnetic Properties , 1991 .

[59]  T. Shiozaki,et al.  Fully relativistic self-consistent field under a magnetic field. , 2015, Physical chemistry chemical physics : PCCP.

[60]  P. Lazzeretti,et al.  Theoretical studies on the benzene molecule. II. Criticism of the ring current model , 1982 .

[61]  I. Gutman,et al.  On the extension of the Hückel rule to polycyclic non-alternant conjugated hydrocarbons , 1976 .

[62]  D. Sundholm,et al.  Magnetically induced currents in [n]cycloparaphenylenes, n = 6-11. , 2010, The Journal of organic chemistry.

[63]  N. Mitzel,et al.  Trimethylaluminum: Bonding by Charge and Current Topology. , 2015, Angewandte Chemie.

[64]  C. Stassis DIAMAGNETIC SCATTERING OF SLOW NEUTRONS. , 1970 .

[65]  Alexander I Boldyrev,et al.  All-metal aromaticity and antiaromaticity. , 2005, Chemical reviews.

[66]  R. Zanasi,et al.  The making of ring currents. , 2016, Physical chemistry chemical physics : PCCP.

[67]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[68]  K. Lonsdale Magnetic Anisotropy and Electronic Structure of Aromatic Molecules , 1937 .

[69]  K. Ruud,et al.  All-Metal Aromaticity: Revisiting the Ring Current Model among Transition Metal Clusters. , 2013, Journal of chemical theory and computation.

[70]  Daniel Sebastiani,et al.  Current densities and nucleus-independent chemical shift maps from reciprocal-space density functional perturbation theory calculations. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[71]  R. Ruoff,et al.  CONFIRMATION OF A VANISHINGLY SMALL RING-CURRENT MAGNETIC SUSCEPTIBILITY OF ICOSAHEDRAL C60 , 1991 .

[72]  Topological analysis of the current density field in molecules , 1983 .

[73]  P. Chattaraj,et al.  Aromaticity in cyclic alkali clusters. , 2008, Physical chemistry chemical physics : PCCP.

[74]  Pekka Pyykkö,et al.  Molecular single-bond covalent radii for elements 1-118. , 2009, Chemistry.

[75]  Andreas Hirsch,et al.  Spherical Aromaticity in Ih Symmetrical Fullerenes: The 2(N+1)2 Rule. , 2000, Angewandte Chemie.

[76]  W. Marsden I and J , 2012 .

[77]  G. Călugăreanu Sur les classes d'isotopie des noeuds tridimensionnels et leurs invariants , 1961 .

[78]  D. Cremer,et al.  Ab-initio based 13C NMR shift calculations as a probe for carbocation structure. Homoaromaticity and rearrangements of the C9H9+ ion , 1991 .

[79]  Ville R. I. Kaila,et al.  Aromatic pathways in conjugated rings connected by single bonds , 2011 .

[80]  Jeremy I. Musher,et al.  On the Nonexistence of ``Ring Currents'' in Aromatic Hydrocarbons , 1967 .

[81]  P. Schleyer,et al.  [5]Pericyclynes Are Not Homoaromatic. , 1996, Journal of Organic Chemistry.

[82]  W. Lipscomb,et al.  Perturbed Hartree—Fock Calculations. I. Magnetic Susceptibility and Shielding in the LiH Molecule , 1963 .

[83]  A. Hirsch,et al.  Spherical aromaticity of fullerenes. , 2001, Chemical reviews.

[84]  D. Sundholm,et al.  Aromatic pathways in carbathiaporphyrins. , 2015, The journal of physical chemistry. A.

[85]  N. N. Karaush,et al.  Aromaticity of the completely annelated tetraphenylenes: NICS and GIMIC characterization , 2015, Journal of Molecular Modeling.

[86]  P. Fowler,et al.  Double Aromaticity in “Boron Toroids” , 2009 .

[87]  Patrick W. Fowler,et al.  Patterns of Ring Currents in Conjugated Molecules: A Few-Electron Model Based on Orbital Contributions , 2001 .

[88]  Fernando Cortés-Guzmán,et al.  The role of induced current density in Steroelectronic effects: Perlin effect , 2015, J. Comput. Chem..

[89]  T. D. Lash,et al.  Oxypyriporphyrin, the First Fully Aromatic Porphyrinoid Macrocycle with a Pyridine Subunit , 1996 .

[90]  Holger Vach,et al.  A deeper insight into strain for the sila‐bi[6]prismane ( Si18H12 ) cluster with its endohedrally trapped silicon atom, Si19H12 , 2015, J. Comput. Chem..

[91]  K. Peters,et al.  Hexa‐tert‐butylcyclotrisilane, a Strained Molecule with Unusually Long SiSi and SiC Bonds , 1984 .

[92]  P. Schwerdtfeger,et al.  Parity violation in nuclear magnetic resonance frequencies of chiral tetrahedral tungsten complexes NWXYZ (X, Y, Z = H, F, Cl, Br or I). , 2013, The Journal of chemical physics.

[93]  Peter Pulay,et al.  Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .

[94]  T. Helgaker,et al.  Non-perturbative calculation of molecular magnetic properties within current-density functional theory. , 2014, The Journal of chemical physics.

[95]  P. Lazzeretti,et al.  Stagnation graphs and topological models of magnetic-field induced electron current density for some small molecules in connection with their magnetic symmetry , 2011 .

[96]  A. Soncini,et al.  Critique of the multipath model for 1J(C,C) nuclear spin-spin coupling via electron current induced by 13C nuclear magnetic dipoles. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[97]  Peter Schwerdtfeger,et al.  Novel hollow all-carbon structures. , 2015, Nanoscale.

[98]  S. Epstein Gauge invariance, current conservation, and GIAO's , 1973 .

[99]  B. Champagne,et al.  Ring Current Model and Anisotropic Magnetic Response of Cyclopropane. , 2010, Journal of chemical theory and computation.

[100]  Rainer Herges and,et al.  Delocalization of Electrons in Molecules , 2001 .

[101]  P. Fowler,et al.  Molecular anapole moments , 1998 .

[102]  Marcel Swart,et al.  The role of aromaticity in determining the molecular structure and reactivity of (endohedral metallo)fullerenes. , 2014, Chemical Society reviews.

[103]  N. H. Martin,et al.  Computation of through-space NMR shielding effects by small-ring aromatic and antiaromatic hydrocarbons. , 2006, Journal of molecular graphics & modelling.

[104]  A. J. Duke,et al.  Quantum topology of molecular charge distributions. 1 , 1979 .

[105]  D. Sundholm,et al.  Aromatic pathways in mono- and bisphosphorous singly Möbius twisted [28] and [30]hexaphyrins. , 2011, Physical chemistry chemical physics : PCCP.

[106]  Neal A. Rakow,et al.  Applications of Porphyrins and Metalloporphyrins to Materials Chemistry , 2000 .

[107]  P. Lazzeretti,et al.  Delocalized currents without a ring of bonded atoms: strong delocalized electron currents induced by magnetic fields in noncyclic molecules. , 2014, The journal of physical chemistry. A.

[108]  W. Kutzelnigg,et al.  The IGLO method. Recent developments , 1993 .

[109]  Hans W. Horn,et al.  ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .

[110]  O. Malkina,et al.  Fully relativistic calculations of NMR shielding tensors using restricted magnetically balanced basis and gauge including atomic orbitals. , 2010, The Journal of chemical physics.

[111]  Anna I. Krylov,et al.  Q‐Chem: an engine for innovation , 2013 .

[112]  P. Blaha,et al.  Calculating NMR chemical shifts using the augmented plane-wave method , 2014 .

[113]  À. Muñoz-Castro Axis-dependent magnetic behavior of C60 and C60(10+). consequences of spherical aromatic character. , 2015, Chemical communications.

[114]  D. Sundholm,et al.  Aromatic pathways in twisted hexaphyrins. , 2010, The journal of physical chemistry. A.

[115]  P. Lazzeretti Methods of continuous translation of the origin of the current density revisited , 2012, Theoretical Chemistry Accounts.

[116]  J. Chandrasekhar,et al.  Double aromaticity: aromaticity in orthogonal planes. The 3,5-dehydrophenyl cation. , 1979 .

[117]  R. Pettit,et al.  The Bicyclo[5,1,0]Octadienyl Cation,1 A New Stable Carbonium Ion , 1962 .

[118]  D. Sundholm,et al.  Gauge-Origin Independent Calculations of the Anisotropy of the Magnetically Induced Current Densities. , 2016, The journal of physical chemistry. A.

[119]  P. Fowler,et al.  Full spectral decomposition of ring currents. , 2006, The journal of physical chemistry. A.

[120]  Johannes M. Dieterich,et al.  Heteroaromaticity approached by charge density investigations and electronic structure calculations. , 2013, Physical chemistry chemical physics : PCCP.

[121]  Anastassia N Alexandrova,et al.  Hepta- and octacoordinate boron in molecular wheels of eight- and nine-atom boron clusters: observation and confirmation. , 2003, Angewandte Chemie.

[122]  E. Kleinpeter,et al.  Ab initio calculation of the anisotropy effect of multiple bonds and the ring current effect of arenes—application in conformational and configurational analysis , 2001 .

[123]  Louie,et al.  Ab Initio Theory of NMR Chemical Shifts in Solids and Liquids. , 1996, Physical review letters.

[124]  G. Schaftenaar,et al.  Molden: a pre- and post-processing program for molecular and electronic structures* , 2000, J. Comput. Aided Mol. Des..

[125]  Clémence Corminboeuf,et al.  Is C60 buckminsterfullerene aromatic? , 2012, Physical chemistry chemical physics : PCCP.

[126]  H. Ottosson,et al.  The excited state antiaromatic benzene ring: a molecular Mr Hyde? , 2015, Chemical Society reviews.

[127]  P. Schmelcher Molecule Formation in Ultrahigh Magnetic Fields , 2012, Science.

[128]  K. Ruud,et al.  Multiconfigurational Self-Consistent Field Calculations of the Magnetically Induced Current Density Using Gauge-Including Atomic Orbitals. , 2013, Journal of chemical theory and computation.

[129]  P. Lazzeretti,et al.  Topology of magnetic-field-induced current-density field in diatropic monocyclic molecules , 2006 .

[130]  New insights into aromatic pathways of carbachlorins and carbaporphyrins based on calculations of magnetically induced current densities. , 2016, Physical chemistry chemical physics : PCCP.

[131]  Dage Sundholm,et al.  Ab initio determination of the induced ring current in aromatic molecules , 1999 .

[132]  D. Sundholm,et al.  Aromatic pathways of porphins, chlorins, and bacteriochlorins. , 2012, The Journal of organic chemistry.

[133]  R. Zanasi,et al.  Three contra-rotating currents from a rational design of polycyclic aromatic hydrocarbons: altan-corannulene and altan-coronene. , 2012, The journal of physical chemistry. A.

[134]  J. Gauss,et al.  Electron-correlated approaches for the calculation of nmr chemical shifts , 2003 .

[135]  G. Scuseria,et al.  Gaussian 03, Revision E.01. , 2007 .

[136]  Non-perturbative treatment of molecules in linear magnetic fields: calculation of anapole susceptibilities. , 2013, The Journal of chemical physics.

[137]  Wim Klopper,et al.  Magnetically induced current densities in aromatic, antiaromatic, homoaromatic, and nonaromatic hydrocarbons. , 2009, The journal of physical chemistry. A.

[138]  A. Barra,et al.  Parity non conservation: NMR parameters in chiral molecules. , 1987, Bio Systems.

[139]  F. Diederich,et al.  The Impact of Antiaromatic Subunits in [4n+2] π-Systems: Bispentalenes with [4n+2] π-Electron Perimeters and Antiaromatic Character. , 2015, Journal of the American Chemical Society.

[140]  M. Juselius Arsole Aromaticity Revisited , 2005 .

[141]  P. Lazzeretti,et al.  Magnetic-field induced electronic anapoles in small molecules , 2011 .

[142]  H. Rzepa,et al.  A Tricyclic Aromatic Isomer of Hexasilabenzene , 2010, Science.

[143]  D. Sundholm,et al.  Aromatic pathways in thieno-bridged porphyrins: understanding the influence of the direction of the thiophene ring on the aromatic character , 2013 .

[144]  N. Colin Baird,et al.  Quantum organic photochemistry. II. Resonance and aromaticity in the lowest 3.pi..pi.* state of cyclic hydrocarbons , 1972 .

[145]  J. Pople,et al.  Molecular orbital theory of aromatic ring currents , 1958 .

[146]  Lin,et al.  ELECTROMAGNETIC INTERACTION WITH PARITY VIOLATION , 2022 .

[147]  E. Vogel NOVEL PORPHYRINOID MACROCYCLES AND THEIR METAL COMPLEXES , 1996 .

[148]  P. Fowler,et al.  Current Densities of Localized and Delocalized Electrons in Molecules , 2002 .

[149]  P. Fowler,et al.  Four- and two-electron rules for diatropic and paratropic ring currents in monocyclic pi systems. , 2001, Chemical communications.

[150]  R. Zanasi Coupled Hartree–Fock calculations of molecular magnetic properties annihilating the transverse paramagnetic current density , 1996 .

[151]  M. Malagoli,et al.  Computational approach to molecular magnetic properties by continuous transformation of the origin of the current density , 1994 .

[152]  Dage Sundholm,et al.  C72: gaudiene, a hollow and aromatic all-carbon molecule. , 2013, Physical chemistry chemical physics : PCCP.

[153]  N. H. Martin,et al.  Ab initio calculation of through-space magnetic shielding of linear polycyclic aromatic hydrocarbons (acenes): extent of aromaticity. , 2009, Journal of molecular graphics & modelling.

[154]  H. Rzepa,et al.  Intrinsically chiral aromaticity. Rules incorporating linking number, twist, and writhe for higher-twist Möbius annulenes. , 2008, Journal of the American Chemical Society.

[155]  M. Malagoli,et al.  Electronic current density induced by nuclear magnetic dipoles , 1994 .

[156]  Renana Gershoni‐Poranne,et al.  Magnetic criteria of aromaticity. , 2015, Chemical Society reviews.

[157]  Jijun Zhao,et al.  Dual relationship between large gold clusters (antifullerenes) and carbon fullerenes: a new lowest-energy cage structure for Au50. , 2007, The journal of physical chemistry. A.

[158]  W. Klopper,et al.  Synthesis of a pentasilapropellane. Exploring the nature of a stretched silicon-silicon bond in a nonclassical molecule. , 2010, Journal of the American Chemical Society.

[159]  D. Wann,et al.  Influence of Antipodally Coupled Iodine and Carbon Atoms on the Cage Structure of 9,12-I2-closo-1,2-C2B10H10: An Electron Diffraction and Computational Study. , 2015, Inorganic chemistry.

[160]  A. Soncini,et al.  Toroidal magnetic states in molecular wheels: Interplay between isotropic exchange interactions and local magnetic anisotropy , 2008 .

[161]  P. Fowler,et al.  Ring currents and magnetisability in C60 , 1995 .

[162]  D. Stalke,et al.  Unusual formation of a N-heterocyclic germylene via homolytic cleavage of a C-C bond. , 2014, Chemical communications.

[163]  C. Wüllen Magnetic properties of the BH molecule , 1993 .

[164]  D. Sundholm,et al.  Effect of fluorine substitution on the aromaticity of polycyclic hydrocarbons. , 2012, The journal of physical chemistry. A.

[165]  M. Sternheim SECOND-ORDER EFFECTS OF NUCLEAR MAGNETIC FIELDS , 1962 .

[166]  Dage Sundholm,et al.  Polycyclic antiaromatic hydrocarbons. , 2008, Physical chemistry chemical physics : PCCP.

[167]  Mikael P. Johansson,et al.  Sphere currents of Buckminsterfullerene. , 2005, Angewandte Chemie.

[168]  F. London,et al.  Théorie quantique des courants interatomiques dans les combinaisons aromatiques , 1937 .

[169]  H. Vach,et al.  Controlled growth of silicon nanocrystals in a plasma reactor. , 2005, Physical review letters.

[170]  P. Fowler,et al.  Aromaticity and antiaromaticity of LixAl4 clusters: Ring current patterns versus electron counting , 2004 .

[171]  D. Sundholm,et al.  The gauge including magnetically induced current method. , 2011, Physical chemistry chemical physics : PCCP.

[172]  M. Baranac‐Stojanović New insight into the anisotropic effects in solution-state NMR spectroscopy , 2014 .

[173]  J. Délery Robert Legendre and Henri Werlé: Toward the Elucidation of Three-Dimensional Separation , 2001 .

[174]  R. Herges,et al.  Anisotropy of the induced current density (ACID), a general method to quantify and visualize electronic delocalization. , 2005, Chemical reviews.

[175]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[176]  D. Sundholm,et al.  Predicting the degree of aromaticity of novel carbaporphyrinoids. , 2015, Physical chemistry chemical physics : PCCP.

[177]  À. Muñoz-Castro Behavior of [2.2]paracyclophane in magnetic fields: A survey of the magnetic response properties from chemical shift tensor maps , 2011 .

[178]  Riccardo Zanasi,et al.  Hydrogen–hydrogen bonding: The current density perspective , 2015, J. Comput. Chem..

[179]  James H. White Self-Linking and the Gauss Integral in Higher Dimensions , 1969 .

[180]  R. Mcweeny,et al.  Ring currents and proton magnetic resonance in aromatic molecules , 1958 .

[181]  Takuo Tanaka,et al.  Split-ring resonators interacting with a magnetic field at visible frequencies , 2013 .

[182]  P. Fowler,et al.  Planar homotropenylium cation: a transition state with reversed aromaticity. , 2015, The Journal of organic chemistry.

[183]  P. Lazzeretti,et al.  Current Density Maps, Magnetizability, and Nuclear Magnetic Shielding Tensors for Anthracene, Phenanthrene, and Triphenylene , 1999 .

[184]  P. Atkins,et al.  Charge and current densities for approximate molecular wavefunctions , 1976 .

[185]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[186]  A. Koch,et al.  Ab-initio quantum-mechanical GIAO calculation of the anisotropic effect of C–C and X–C single bonds—application to the 1H NMR spectrum of cyclohexane , 2002 .

[187]  E. C. S.,et al.  The Theory of Electric and Magnetic Susceptibilities , 1932, Nature.

[188]  P. Lazzeretti,et al.  Induced orbital paramagnetism and paratropism in closed-shell molecules. , 2009, The journal of physical chemistry. A.

[189]  P. Fowler,et al.  Induced currents and electron counting in aromatic boron wheels: B8(2-) and B9-). , 2007, Inorganic chemistry.

[190]  M. Malagoli,et al.  Molecular magnetic properties within continuous transformations of origin of the current density , 1995 .

[191]  Ashley R. Head,et al.  On the molecular and electronic structures of AsP3 and P4. , 2010, Journal of the American Chemical Society.

[192]  W. Lipscomb The Chemical Shift and Other Second-Order Magnetic and Electric Properties of Small Molecules , 1966 .

[193]  P. Lazzeretti,et al.  Topological models of magnetic field induced current density field in small molecules , 2009 .

[194]  A. Hirsch,et al.  Spherical Aromaticity of Inorganic Cage Molecules. , 2001, Angewandte Chemie.

[195]  J. Chandrasekhar,et al.  Elusiveness of bishomoaromaticity in anionic systems: the bicyclo[3.2.1]octa-3,6-dien-2-yl anion , 1981 .

[196]  R. Mallion,et al.  Aromaticity and ring currents. , 2001, Chemical reviews.

[197]  M. Jabłoński,et al.  Topology of the magnetically induced current density and proton magnetic shielding in hydrogen bonded systems. , 2015, Physical chemistry chemical physics : PCCP.

[198]  A. Osuka,et al.  Conjugated Porphyrin Arrays: Synthesis, Properties and Applications for Functional Materials , 2015 .

[199]  Peter Schwerdtfeger,et al.  Progress toward the first observation of parity violation in chiral molecules by high-resolution laser spectroscopy. , 2010, Chirality.

[200]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[201]  H. Rzepa,et al.  Ring currents in the dismutational aromatic Si6R6. , 2010, Angewandte Chemie.

[202]  J. Gomes Topology of the electronic current density in molecules , 1983 .

[203]  Longjiu Cheng,et al.  B14(2+): a magic number double-ring cluster. , 2012, The Journal of chemical physics.

[204]  J. Aihara Circuit resonance energy: a key quantity that links energetic and magnetic criteria of aromaticity. , 2006, Journal of the American Chemical Society.

[205]  À. Muñoz-Castro Magnetic Response Properties of Coinage Metal Macrocyles. Insights into the Induced Magnetic Field through the Analysis of [Cu5(Mes)5], [Ag4(Mes)4], and [Au5(Mes)5] (Mes = 2,4,6-Me3C6H2) , 2012 .

[206]  P. Fowler,et al.  Unconventional ring currents in an `all-metal aromatic', Al42− , 2001 .

[207]  N. D. Charistos,et al.  Interpretation of electron delocalization in benzene, cyclobutadiene, and borazine based on visualization of individual molecular orbital contributions to the induced magnetic field. , 2014, The journal of physical chemistry. A.

[208]  D. Sundholm,et al.  Analysis of the magnetically induced current density of molecules consisting of annelated aromatic and antiaromatic hydrocarbon rings. , 2016, Physical chemistry chemical physics : PCCP.

[209]  Gaël Varoquaux,et al.  Mayavi: 3D Visualization of Scientific Data , 2010, Computing in Science & Engineering.

[210]  J. Gauss,et al.  Calculation of current densities using gauge-including atomic orbitals. , 2004, The Journal of chemical physics.

[211]  D. Sundholm,et al.  Antiaromatic character of 16 π electron octaethylporphyrins: magnetically induced ring currents from DFT-GIMIC calculations. , 2015, The journal of physical chemistry. A.

[212]  P. Lazzeretti,et al.  Topology of magnetic-field induced electron current density in the cubane molecule. , 2008, The Journal of chemical physics.

[213]  Luca Frediani,et al.  The Dalton quantum chemistry program system , 2013, Wiley interdisciplinary reviews. Computational molecular science.

[214]  P. Schmelcher,et al.  Molecules in strong magnetic fields: Some perspectives and general aspects , 1997 .

[215]  Daniel Sebastiani,et al.  A New ab-Initio Approach for NMR Chemical Shifts in Periodic Systems , 2001 .

[216]  P. Blaha,et al.  Calculations of NMR chemical shifts with APW-based methods , 2012 .

[217]  P. Fowler,et al.  Diamagnetic and paramagnetic ring currents in expanded porphyrins. , 2004, Organic & biomolecular chemistry.

[218]  M. Solà,et al.  Open-shell spherical aromaticity: the 2N2 + 2N + 1 (with S = N + ½) rule. , 2011, Chemical communications.

[219]  Alexander I Boldyrev,et al.  All-Metal Antiaromatic Molecule: Rectangular Al44- in the Li3Al4- Anion , 2003, Science.

[220]  P. Fowler,et al.  Ring currents in the porphyrins: a four-orbital model. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[221]  P. Pyykkö,et al.  How Do Spin–Orbit-Induced Heavy-Atom Effects on NMR Chemical Shifts Function? Validation of a Simple Analogy to Spin–Spin Coupling by Density Functional Theory (DFT) Calculations on Some Iodo Compounds , 1998 .

[222]  E. Fleischer,et al.  The Structure of Porphine1 , 1965 .

[223]  J. M. Ugalde,et al.  Recent developments and future prospects of all-metal aromatic compounds. , 2015, Chemical Society reviews.

[224]  R. H. Mitchell,et al.  Experimental verification of the homoaromaticity of 1,3,5-cycloheptatriene and evaluation of the aromaticity of tropone and the tropylium cation by use of the dimethyldihydropyrene probe. , 2012, Journal of the American Chemical Society.

[225]  E. Kleinpeter Quantification and Visualization of the Anisotropy Effect in NMR Spectroscopy by Through-Space NMR Shieldings , 2014 .

[226]  A. Koch,et al.  Quantitative study and visualization of spherical 2(N + 1)2 homoaromaticity by through space NMR shieldings (TSNMRS) , 2008 .

[227]  Julio Caballero,et al.  Minimizing the risk of reporting false aromaticity and antiaromaticity in inorganic heterocycles following magnetic criteria. , 2014, Inorganic chemistry.

[228]  J. Gauss,et al.  Magnetically induced current densities in Al4 (2-) and Al4 (4-) species studied at the coupled-cluster level. , 2005, The Journal of chemical physics.

[229]  M. B. Ferraro,et al.  Magnetizabilities of diatomic and linear triatomic molecules in a time-independent nonuniform magnetic field. , 2014, The journal of physical chemistry. A.

[230]  G. Seifert,et al.  The induced magnetic field in cyclic molecules. , 2004, Chemistry.

[231]  Brian Cabral,et al.  Imaging vector fields using line integral convolution , 1993, SIGGRAPH.

[232]  D. Keen,et al.  The neutron diamagnetic form factor of graphite , 1989 .

[233]  David J. Williams,et al.  The Tetrasilabicyclo[1.1.0]butane System: Structure of 1,3-Di-tert-butyl-2,2,4,4-tetrakis-(2,6-diethylphenyl)tetrasilabicyclo[1.1.0]butane† , 1986 .

[234]  P. Blaha,et al.  NMR Shielding in Metals Using the Augmented Plane Wave Method , 2015, The journal of physical chemistry. C, Nanomaterials and interfaces.

[235]  D. Sundholm,et al.  Insights into magnetically induced current pathways and optical properties of isophlorins. , 2013, The journal of physical chemistry. A.

[236]  A. Boardman,et al.  On the aromagnetism and anapole moment of anthracene nanocrystals , 2007 .

[237]  M. Kozlov,et al.  Parity violation effects in diatomics , 1995 .

[238]  P. Warner,et al.  Further evidence on the nature of the monohomotropylium ion , 1970 .

[239]  N. N. Karaush,et al.  Aromaticity of the planar hetero[8]circulenes and their doubly charged ions: NICS and GIMIC characterization. , 2014, Physical chemistry chemical physics : PCCP.

[240]  Thomas Gregor,et al.  A comparison of methods for the calculation of NMR chemical shifts , 1999 .

[241]  A. Ceulemans,et al.  Toroidal moment in the molecular magnet V-15 , 2009 .

[242]  Lijuan Zhang,et al.  A special conjugated model around sp3 carbon atoms: density functional theory study on the homoaromatic electron delocalization and applications of benzo-fused tetra(triptycene)porphyrins. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[243]  C. C. Law,et al.  ParaView: An End-User Tool for Large-Data Visualization , 2005, The Visualization Handbook.

[244]  A. I. Popov,et al.  Anapole moment and spin-electric interactions in rare-earth nanoclusters , 2009 .

[245]  P. Schleyer,et al.  Evidence for d orbital aromaticity in square planar coinage metal clusters. , 2005, Journal of the American Chemical Society.

[246]  R. Bader,et al.  Use of electron charge and current distributions in the determination of atomic contributions to magnetic properties , 1996 .

[247]  Lai‐Sheng Wang,et al.  Observation of all-metal aromatic molecules. , 2001, Science.

[248]  F. A. Thiel,et al.  Experimental and theoretical determination of the magnetic susceptibility of C60 and C70 , 1991, Nature.

[249]  P. Fowler,et al.  Ring-current aromaticity in open-shell systems , 2008 .

[250]  P. Fowler,et al.  On the orbital analysis of magnetic propertiesPresented at the ESF Exploratory Workshop: New Perspectives on Aromaticity, Exeter, UK, July 5?9, 2003. , 2004 .

[251]  D. Sundholm,et al.  Calculation of ring-current susceptibilities for potentially homoaromatic hydrocarbons , 2003 .

[252]  P. Schleyer,et al.  Description of aromaticity in porphyrinoids. , 2013, Journal of the American Chemical Society.

[253]  P. Schleyer,et al.  Homodiboriranides : the simplest negatively charged homoaromatic compounds , 1992 .

[254]  Kurt S. Hoffmayer,et al.  Electrocardiographic Patterns of Ventricular Arrhythmias in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy , 2012, Front. Physio..

[255]  D. Scheschkewitz A molecular silicon cluster with a "naked" vertex atom*. , 2005, Angewandte Chemie.

[256]  Shubhrodeep Pathak,et al.  A Serendipitous Rendezvous with a Four-Center Two-Electron Bonded Intermediate in the Aerial Oxidation of Hydrazine. , 2016, Chemistry.

[257]  Todd A. Keith,et al.  Calculation of magnetic response properties using a continuous set of gauge transformations , 1993 .

[258]  Andrew J. P. White,et al.  A stable derivative of the global minimum on the Si6H6 potential energy surface. , 2011, Angewandte Chemie.

[259]  A. Barra,et al.  PARITY NON-CONSERVATION AND NMR PARAMETERS , 1996 .

[260]  J. A. Gomes Topological elements of the magnetically induced orbital current densities , 1983 .

[261]  Radovan Bast,et al.  4-Component relativistic calculation of the magnetically induced current density in the group 15 heteroaromatic compounds , 2009 .

[262]  N. N. Karaush,et al.  Aromaticity of the doubly charged [8]circulenes. , 2016, Physical chemistry chemical physics : PCCP.

[263]  P. Fowler,et al.  Ring-current signatures in shielding-density maps , 2005 .

[264]  H. Kroto,et al.  C 60 Buckminsterfullerene , 1990 .

[265]  T. Helgaker,et al.  Maps of current density using density-functional methods. , 2008, The Journal of chemical physics.

[266]  Guglielmo Monaco On the diatropic perimeter of iterated altan-molecules. , 2015, Physical chemistry chemical physics : PCCP.

[267]  T. Helgaker,et al.  Nonperturbative ab initio calculations in strong magnetic fields using London orbitals. , 2008, The Journal of chemical physics.

[268]  M. B. Ferraro,et al.  Theoretical estimates of the anapole magnetizabilities of C₄H₄X₂ cyclic molecules for X=O, S, Se, and Te. , 2014, The Journal of chemical physics.

[269]  Ž. Rinkevičius,et al.  Calculations of nuclear magnetic shielding in paramagnetic molecules , 2003 .

[270]  Zhi‐Xiang Wang,et al.  Construction Principles of "Hyparenes": Families of Molecules with Planar Pentacoordinate Carbons , 2001, Science.

[271]  W. Russel,et al.  All-Metal Antiaromatic Molecule: Rectangular Al 4 4- in the Li 3 Al 4 - Anion , 2003 .

[272]  D. L. Cooper,et al.  Six questions on topology in theoretical chemistry , 2015 .

[273]  A. Wasserman,et al.  Current density partitioning in time-dependent current density functional theory. , 2014, The Journal of chemical physics.

[274]  Tapani A. Pakkanen,et al.  Icosahedral Au72: A Predicted Chiral and Spherically Aromatic Golden Fullerene , 2008 .

[275]  M. Wegener,et al.  Periodic nanostructures for photonics , 2007 .

[276]  X. Chi,et al.  Theoretical evidence of d‐orbital aromaticity in anionic metal X –3 (X = Sc, Y, La) clusters , 2007 .

[277]  W. L. Jorgensen,et al.  Homoaromaticity and bicycloaromaticity in carbanions , 1981 .

[278]  Jinlan Wang,et al.  Hollow cages versus space-filling structures for medium-sized gold clusters: the spherical aromaticity of the Au50 cage. , 2005, The journal of physical chemistry. A.

[279]  Jeremy I. Musher,et al.  On the Magnetic Susceptibility of Aromatic Hydrocarbons and , 1965 .

[280]  M. Repiský,et al.  How does relativity affect magnetically induced currents? , 2015, Chemical communications.

[281]  R. Bader,et al.  Quantum topology of molecular charge distributions. II. Molecular structure and its change , 1979 .

[282]  R. F. Curl,et al.  Probing C60 , 1988, Science.

[283]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[284]  T. Nishinaga,et al.  The ring inversion of silacycloheptatriene and cycloheptatriene. Comparison of the ‘aromaticity’ of planar and boat conformers estimated by nucleus‐independent chemical shift , 1998 .

[285]  R. Berger Prediction of a Cyclic Helical Oligoacetylene Showing Anapolar Ring Currents in the Magnetic Field , 2012 .