A Case for a Biorthogonal Jacobi-Davidson Method: Restarting and Correction Equation
暂无分享,去创建一个
[1] E. Davidson. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .
[2] Henk A. van der Vorst,et al. Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..
[3] Gerard L. G. Sleijpen,et al. Effective preconditioning techniques for eigenvalue problems , 1999 .
[4] Jack Dongarra,et al. A Test Matrix Collection for Non-Hermitian Eigenvalue Problems , 1997 .
[5] A. Bultheel,et al. Implicitly restarting Lanczos , 1998 .
[6] Danny C. Sorensen,et al. Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..
[7] Richard Barrett,et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.
[8] M. Eiermann,et al. Geometric aspects of the theory of Krylov subspace methods , 2001, Acta Numerica.
[9] Yousef Saad,et al. A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..
[10] Ronald B. Morgan,et al. On restarting the Arnoldi method for large nonsymmetric eigenvalue problems , 1996, Math. Comput..
[11] E. Davidson,et al. Improved Algorithms for the Lowest Few Eigenvalues and Associated Eigenvectors of Large Matrices , 1992 .
[12] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[13] Bernard Philippe,et al. The Davidson Method , 1994, SIAM J. Sci. Comput..
[14] J. H. van Lenthe,et al. A space‐saving modification of Davidson's eigenvector algorithm , 1990 .
[15] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[16] E. Sturler,et al. Truncation Strategies for Optimal Krylov Subspace Methods , 1999 .
[17] Yousef Saad,et al. Deflated and Augmented Krylov Subspace Techniques , 1997, Numer. Linear Algebra Appl..
[18] R. Freund. Quasi-kernel polynomials and their use in non-Hermitian matrix iterations , 1992 .
[19] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[20] D. Sorensen. Numerical methods for large eigenvalue problems , 2002, Acta Numerica.
[21] Y. Saad,et al. Restarting techniques for the (Jacobi-)Davidson symmetric eigenvalue methods , 1998 .
[22] H. V. D. Vorst,et al. Jacobi-Davidson style QR and QZ algorithms for the partial reduction of matrix pencils , 1996 .
[23] H. V. D. Vorst,et al. Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .
[24] Qiang Ye,et al. ABLE: An Adaptive Block Lanczos Method for Non-Hermitian Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..
[25] R. Morgan,et al. Generalizations of Davidson's method for computing eigenvalues of sparse symmetric matrices , 1986 .
[26] Ronald B. Morgan,et al. A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..
[27] Kesheng Wu,et al. Dynamic Thick Restarting of the Davidson, and the Implicitly Restarted Arnoldi Methods , 1998, SIAM J. Sci. Comput..
[28] Gerard L. G. Sleijpen,et al. Alternative correction equations in the Jacobi-Davidson method , 1999 .
[29] Zhishun A. Liu,et al. A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .
[30] Gene H. Golub,et al. Adaptively Preconditioned GMRES Algorithms , 1998, SIAM J. Sci. Comput..
[31] A. Knyazev. A Preconditioned Conjugate Gradient Method for Eigenvalue Problems and its Implementation in a Subspace , 1991 .
[32] Gerard L. G. Sleijpen,et al. A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..