Stochastic Solutions for the Two-Dimensional Advection-Diffusion Equation

In this paper, we solve the two-dimensional advection-diffusion equation with random transport velocity. The generalized polynomial chaos expansion is employed to discretize the equation in random space while the spectral hp element method is used for spatial discretization. Numerical results which demonstrate the convergence of generalized polynomial chaos are presented. Specifically, it appears that the fast convergence rate in the variance is the same as that of the mean solution in the Jacobi-chaos unlike the Hermite-chaos. To this end, a new model to represent compact Gaussian distributions is also proposed.

[1]  I. Babuska,et al.  Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .

[2]  Roger Ghanem,et al.  Ingredients for a general purpose stochastic finite elements implementation , 1999 .

[3]  George Em Karniadakis,et al.  Supersensitivity due to uncertain boundary conditions , 2004 .

[4]  R. Ghanem,et al.  A stochastic projection method for fluid flow. I: basic formulation , 2001 .

[5]  森山 昌彦,et al.  「確率有限要素法」(Stochastic Finite Element Method) , 1985 .

[6]  M. Loève,et al.  Elementary Probability Theory , 1977 .

[7]  R. Askey,et al.  Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , 1985 .

[8]  Hisanao Ogura,et al.  Orthogonal functionals of the Poisson process , 1972, IEEE Trans. Inf. Theory.

[9]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[10]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[11]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[12]  H. Matthies,et al.  Finite elements for stochastic media problems , 1999 .

[13]  Steven A. Orszag,et al.  Dynamical Properties of Truncated Wiener‐Hermite Expansions , 1967 .

[14]  René Carmona,et al.  Stochastic Partial Differential Equations: Six Perspectives , 1998 .

[15]  Moshe Y. Vardi,et al.  Verification , 1917, Handbook of Automata Theory.

[16]  T. Trucano,et al.  Verification, Validation, and Predictive Capability in Computational Engineering and Physics , 2004 .

[17]  A. Chorin Hermite expansions in Monte-Carlo computation , 1971 .

[18]  J. M. Watt Numerical Initial Value Problems in Ordinary Differential Equations , 1972 .

[19]  James Glimm,et al.  Stochastic partial differential equations: Selected applications in continuum physics , 1999 .

[20]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[21]  Ivo Babuška,et al.  On solving elliptic stochastic partial differential equations , 2002 .

[22]  John Red-Horse,et al.  Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach , 1999 .

[23]  Rene F. Swarttouw,et al.  The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Report Fac , 1996, math/9602214.

[24]  Humberto Contreras,et al.  The stochastic finite-element method , 1980 .

[25]  D. Xiu,et al.  Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .

[26]  Daniel M. Tartakovsky,et al.  Mean Flow in composite porous media , 2000 .

[27]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[28]  N. Wiener The Homogeneous Chaos , 1938 .

[29]  Roger Ghanem,et al.  Scales of fluctuation and the propagation of uncertainty in random porous media , 1998 .

[30]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[31]  Contents , 1997, Current Opinion in Neurobiology.