MONTE CARLO METHODS FOR SOLVING THE BOLTZMANN TRANSPORT EQUATION

We review Monte Carlo methods for solving the Boltzmann equation for applications to small-scale transport processes, with particular emphasis on nanoscale heat transport as mediated by phonons. Our discussion reviews the numerical foundations of Monte Carlo algorithms, basic simulation methodology, as well as recent developments in the field. Examples of the latter include formulations for calculating the effective thermal conductivity of periodically nanostructured materials and variance-reduction methodologies for reducing the computational cost associated with statistical sampling of field properties of interest, such as the temperature and heat flux. Recent developments are presented in the context of applications of current practical interest, including multiscale problems that have motivated some of the most recent developments.

[1]  A. McGaughey,et al.  Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations , 2009 .

[2]  Francis J. Alexander,et al.  The direct simulation Monte Carlo method , 1997 .

[3]  J. Randrianalisoa,et al.  Monte Carlo simulation of cross-plane thermal conductivity of nanostructured porous silicon films , 2008 .

[4]  Nicolas G. Hadjiconstantinou,et al.  Analysis of dis-cretization in the direct simulation Monte Carlo , 2000 .

[5]  Lingping Zeng,et al.  Experimental and numerical investigation of phonon mean free path distribution , 2013 .

[6]  Gang Chen,et al.  Heat transport in silicon from first-principles calculations , 2011, 1107.5288.

[7]  Arden L. Moore,et al.  Phonon backscattering and thermal conductivity suppression in sawtooth nanowires , 2008 .

[8]  Lucas Lindsay,et al.  Ab Initio Thermal Transport , 2014 .

[9]  P. Charrier,et al.  Rarefied gas flow over an in-line array of circular cylinders , 2008 .

[10]  Alejandro L. Garcia,et al.  Statistical error in particle simulations of hydrodynamic phenomena , 2002, cond-mat/0207430.

[11]  D. Lacroix,et al.  Modeling semiconductor nanostructures thermal properties: The dispersion role , 2008, 0803.3954.

[12]  Graeme A. Bird,et al.  Approach to Translational Equilibrium in a Rigid Sphere Gas , 1963 .

[13]  Z. Akšamija,et al.  Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes , 2010 .

[14]  Francis J. Alexander,et al.  Cell size dependence of transport coefficients in stochastic particle algorithms , 1998 .

[15]  Iain D. Boyd,et al.  Predicting continuum breakdown in hypersonic viscous flows , 2003 .

[16]  Michael F. Modest,et al.  Backward Monte Carlo Simulations in Radiative Heat Transfer , 2003 .

[17]  E. Gelbard,et al.  Monte Carlo Principles and Neutron Transport Problems , 2008 .

[18]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[19]  M. Pinar Mengüç,et al.  A Monte Carlo simulation for phonon transport within silicon structures at nanoscales with heat generation , 2011 .

[20]  D. Lacroix,et al.  Monte Carlo transient phonon transport in silicon and germanium at nanoscales , 2005, physics/0504072.

[21]  Gang Chen,et al.  Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance. , 2008, The Review of scientific instruments.

[22]  A. McGaughey,et al.  PREDICTING PHONON PROPERTIES FROM EQUILIBRIUM MOLECULAR DYNAMICS SIMULATIONS , 2014 .

[23]  R. Peterson Direct simulation of phonon-mediated heat transfer in a Debye crystal , 1994 .

[24]  L. Pareschi,et al.  Asymptotic preserving Monte Carlo methods for the Boltzmann equation , 2000 .

[25]  D. Lacroix,et al.  Monte Carlo modeling of phonon transport in nanodevices , 2007 .

[26]  Nicolas G. Hadjiconstantinou,et al.  Low-noise Monte Carlo simulation of the variable hard sphere gas , 2011 .

[27]  Mei-Jiau Huang,et al.  An investigation into the lattice thermal conductivity of random nanowire composites , 2012 .

[28]  Alan J. H. McGaughey,et al.  Quantitative validation of the Boltzmann transport equation phonon thermal conductivity model under the single-mode relaxation time approximation , 2004 .

[29]  Gang Chen,et al.  Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures , 1997 .

[30]  Alejandro L. Garcia,et al.  Three-dimensional Hybrid Continuum-Atomistic Simulations for Multiscale Hydrodynamics , 2004 .

[31]  Lowell L. Baker,et al.  Variance reduction for Monte Carlo solutions of the Boltzmann equation , 2005 .

[32]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[33]  J. Shiomi NONEQUILIRIUM MOLECULAR DYNAMICS METHODS FOR LATTICE HEAT CONDUCTION CALCULATIONS , 2014 .

[34]  Jean-Philippe M. Péraud,et al.  Deviational methods for small-scale phonon transport , 2014 .

[35]  Walter A. Harrison,et al.  Electrons and Phonons , 2000 .

[36]  G. C. Pomraning,et al.  Linear Transport Theory , 1967 .

[37]  W. Wagner A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation , 1992 .

[38]  A. Majumdar Microscale Heat Conduction in Dielectric Thin Films , 1993 .

[39]  On the Assumption of Detailed Balance in Prediction of Diffusive Transmission Probability During Interfacial Transport , 2010 .

[40]  Kenneth E. Goodson,et al.  Review: Multiscale Thermal Modeling in Nanoelectronics , 2005 .

[41]  François Golse,et al.  A rarefied gas flow caused by a discontinuous wall temperature , 2001 .

[42]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[43]  T. Fisher,et al.  THE ATOMISTIC GREEN'S FUNCTION METHOD FOR INTERFACIAL PHONON TRANSPORT , 2014 .

[44]  Francis J. Alexander,et al.  Direct simulation Monte Carlo for thin‐film bearings , 1994 .

[45]  G. P. Srivastava Theories of Phonon Transport in Bulk and Nanostructed Solids , 2014 .

[46]  A. Majumdar,et al.  Monte Carlo Simulation of Silicon Nanowire Thermal Conductivity , 2005 .

[47]  A. Minnich,et al.  Determining phonon mean free paths from observations of quasiballistic thermal transport. , 2012, Physical review letters.

[48]  Qing Hao,et al.  Frequency-dependent Monte Carlo simulations of phonon transport in two-dimensional porous silicon with aligned pores , 2009 .

[49]  A. Henry,et al.  Thermal interface conductance in Si/Ge superlattices by equilibrium molecular dynamics , 2012 .

[50]  Y. Chalopin,et al.  EQUILIBRIUM MOLECULAR DYNAMICS SIMULATIONS ON INTERFACIAL PHONON TRANSPORT , 2014 .

[51]  Alejandro L. Garcia,et al.  Adaptive Mesh and Algorithm Refinement Using Direct Simulation Monte Carlo , 1999 .

[52]  Gang Chen,et al.  Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics , 2008 .

[53]  Francesco Mauri,et al.  Ab initio variational approach for evaluating lattice thermal conductivity , 2012, 1212.0470.

[54]  D. G. Walker,et al.  Phonon production and Nonequilibrium Transport from ion strikes , 2004, IEEE Transactions on Nuclear Science.

[55]  Ronggui Yang,et al.  Thermal conductivity modeling of compacted nanowire composites , 2007 .

[56]  M. Matsumoto,et al.  DSMC Scheme for Phonon Transport in Solid Thin Films , 2012 .

[57]  N. Hadjiconstantinou,et al.  Constant-Wall-Temperature Nusselt Number in Micro and Nano-Channels 1 , 2002 .

[58]  Tadeusz Paszkiewicz,et al.  Physics of Phonons , 1987 .

[59]  J. R. Torczynski,et al.  Normal solutions of the Boltzmann equation for highly nonequilibrium Fourier flow and Couette flow , 2006 .

[60]  N. G. Hadjiconstantinou Discussion of recent developments in hybrid atomistic-continuum methods for multiscale hydrodynamics , 2005 .

[61]  D. Cahill Analysis of heat flow in layered structures for time-domain thermoreflectance , 2004 .

[62]  D. C. Wadsworth,et al.  One-dimensional hybrid continuum/particle simulation approach for rarefied hypersonic flows , 1990 .

[63]  Li Shi,et al.  Thermal Transport Measurement Techniques for Nanowires and Nanotubes , 2015, 1504.05128.

[64]  Bekir Sami Yilbas,et al.  Quasiballistic heat transfer studied using the frequency-dependent Boltzmann transport equation , 2011 .

[65]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[66]  J. Torczynski,et al.  An improved Reynolds-equation model for gas damping of microbeam motion , 2003, Journal of Microelectromechanical Systems.

[67]  Cristina H. Amon,et al.  Submicron heat transport model in silicon accounting for phonon dispersion and polarization , 2004 .

[68]  Luc Mieussens,et al.  A multiscale kinetic-fluid solver with dynamic localization of kinetic effects , 2009, J. Comput. Phys..

[69]  Mesoscale modeling of phononic thermal conductivity of porous Si: interplay between porosity, morphology and surface roughness , 2012 .

[70]  Sandip Mazumder,et al.  Monte Carlo Study of Phonon Heat Conduction in Silicon Thin Films Including Contributions of Optical Phonons , 2010 .

[71]  C. Cercignani Slow Rarefied Flows , 2006 .

[72]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[73]  Thomas M. M. Homolle,et al.  A low-variance deviational simulation Monte Carlo for the Boltzmann equation , 2007, J. Comput. Phys..

[74]  Yoshio Sone,et al.  Molecular Gas Dynamics: Theory, Techniques, and Applications , 2006 .

[75]  Wolfgang Wagner,et al.  Direct simulation Monte Carlo method for the Uehling-Uhlenbeck-Boltzmann equation. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  Nicolas G. Hadjiconstantinou,et al.  Arbitrary-pressure chemical vapor deposition modeling using direct simulation Monte Carlo with nonlinear surface chemistry , 2004 .

[77]  Natalio Mingo,et al.  Flexural phonons and thermal transport in graphene , 2010 .

[78]  M. G. Holland Analysis of Lattice Thermal Conductivity , 1963 .

[79]  S. Taguchi Diffusion model for Knudsen-type compressor composed of periodic arrays of circular cylinders , 2010 .

[80]  M. Pinar Mengüç,et al.  A unified Monte Carlo treatment of the transport of electromagnetic energy, electrons, and phonons in absorbing and scattering media , 2010 .

[81]  Alejandro L. Garcia,et al.  Erratum: “Cell size dependence of transport coefficients in stochastic particle algorithms” [Phys. Fluids 10, 1540 (1998)] , 2000 .

[82]  Sebastian Volz,et al.  Molecular dynamics simulation of thermal conductivity of silicon nanowires , 1999 .

[83]  Relaxation of Phonons in Classical MD Simulation , 2008 .

[84]  T. Teichmann,et al.  Introduction to physical gas dynamics , 1965 .

[85]  J. Murthy,et al.  Review of Multiscale Simulation in Submicron Heat Transfer , 2005 .

[86]  P. Klemens,et al.  Thermal resistivity of die ectric crystals due to four-phonon processes and optical modes , 1977 .

[87]  Gregg A Radtke,et al.  Variance-reduced particle simulation of the Boltzmann transport equation in the relaxation-time approximation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[88]  Gang Chen,et al.  A Comprehensive Review of Heat Transfer in Thermoelectric Materials and Devices , 2014, 1401.0749.

[89]  Lowell L. Baker,et al.  Variance‐reduced Monte Carlo solutions of the Boltzmann equation for low‐speed gas flows: A discontinuous Galerkin formulation , 2008 .

[90]  A. Schmidt PUMP-PROBE THERMOREFLECTANCE , 2013 .

[91]  Nicolas G. Hadjiconstantinou,et al.  Dissipation in Small Scale Gaseous Flows , 2003 .

[92]  R. H. Fowler The Mathematical Theory of Non-Uniform Gases , 1939, Nature.

[93]  E. Pop,et al.  Analytic band Monte Carlo model for electron transport in Si including acoustic and optical phonon dispersion , 2004 .

[94]  H. Maris,et al.  Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. , 1993, Physical review. B, Condensed matter.

[95]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[96]  H. Hamzeh,et al.  Monte Carlo study of phonon dynamics in III-V compounds , 2011 .

[97]  S. Phillpot,et al.  Multiscale simulation of phonon transport in superlattices , 2003 .

[98]  J. Murthy,et al.  On the accuracy of classical and long wavelength approximations for phonon transport in graphene , 2011 .

[99]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[100]  M. Matsumoto,et al.  DSMC scheme to study phonon dynamics , 2011 .

[101]  A. Minnich Exploring electron and phonon transport at the nanoscale for thermoelectric energy conversion , 2011 .

[102]  Low-Variance Monte Carlo Simulation of Thermal Transport in Graphene , 2012 .

[103]  Fischer,et al.  Phonon radiative heat transfer and surface scattering. , 1988, Physical review. B, Condensed matter.

[104]  Nicolas G. Hadjiconstantinou,et al.  The limits of Navier-Stokes theory and kinetic extensions for describing small-scale gaseous hydrodynamics , 2005 .

[105]  Thermal conductivity and phonon transport properties of silicon using perturbation theory and the environment-dependent interatomic potential , 2009 .

[106]  Thomas E. Schwartzentruber,et al.  A modular particle-continuum numerical method for hypersonic non-equilibrium gas flows , 2007, J. Comput. Phys..

[107]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[108]  Li Shi,et al.  Two-Dimensional Phonon Transport in Supported Graphene , 2010, Science.

[109]  C. Landon A deviational Monte Carlo formulation of ab initio phonon transport and its application to the study of kinetic effects in graphene ribbons , 2014 .

[110]  M. Kaviany,et al.  Erratum: Quantitative validation of the Boltzmann transport equation phonon thermal conductivity model under the single-mode relaxation time approximation [Phys. Rev. B 69, 094303 (2004)] , 2009 .

[111]  A. Majumdar,et al.  Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization , 2001 .

[112]  Wolfgang Wagner,et al.  Deviational particle Monte Carlo for the Boltzmann equation , 2008, Monte Carlo Methods Appl..

[113]  Parag A. Pathak,et al.  Massachusetts Institute of Technology , 1964, Nature.

[114]  A. Majumdar,et al.  Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures , 2002 .

[115]  Cristina H. Amon,et al.  In-plane phonon transport in thin films , 2010 .

[116]  Amelia Carolina Sparavigna,et al.  An iterative approach to the phonon Boltzmann equation in the theory of thermal conductivity , 1995 .

[117]  A. Panagiotopoulos Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble , 1987 .

[118]  J. Torczynski,et al.  Calculations of the near-wall thermophoretic force in rarefied gas flow , 2002 .

[119]  N. Hadjiconstantinou Regular Article: Hybrid Atomistic–Continuum Formulations and the Moving Contact-Line Problem , 1999 .

[120]  Alejandro L. Garcia,et al.  Time step truncation error in direct simulation Monte Carlo , 2000 .

[121]  Stephen B. Soffer,et al.  Statistical Model for the Size Effect in Electrical Conduction , 1967 .

[122]  Michail A. Gallis,et al.  Direct simulation Monte Carlo convergence behavior of the hard-sphere-gas thermal conductivity for Fourier heat flow , 2006 .

[123]  J. Murthy,et al.  Spectral phonon conduction and dominant scattering pathways in graphene , 2011 .

[124]  Lorenzo Pareschi,et al.  Adaptive and Recursive Time Relaxed Monte Carlo Methods for Rarefied Gas Dynamics , 2008, SIAM J. Sci. Comput..

[125]  Arthur F. Voter,et al.  Introduction to the Kinetic Monte Carlo Method , 2007 .

[126]  Gregg A Radtke,et al.  On efficient simulations of multiscale kinetic transport , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[127]  E. Pop MONTE CARLO TRANSPORT AND HEAT GENERATION IN SEMICONDUCTORS , 2014 .

[128]  D. G. Walker,et al.  Computational Study of Thermal Rectification From Nanostructured Interfaces , 2011 .

[129]  William H. Press,et al.  Numerical recipes in C , 2002 .

[130]  P. Hopkins Multiple phonon processes contributing to inelastic scattering during thermal boundary conductance at solid interfaces , 2008 .

[131]  Nicolas Hadjiconstantinou,et al.  An alternative approach to efficient simulation of micro/nanoscale phonon transport , 2012, 1206.3316.

[132]  Gang Chen,et al.  Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation , 2008 .

[133]  Nicolas Hadjiconstantinou,et al.  Efficient simulation of multidimensional phonon transport using energy-based variance-reduced Monte Carlo formulations , 2011, 1109.3910.

[134]  N. Hadjiconstantinou,et al.  Simulation of Heat Transport in Graphene Nanoribbons Using the Ab-Initio Scattering Operator , 2014 .

[135]  W. Wagner,et al.  Stochastic Numerics for the Boltzmann Equation , 2005 .

[136]  S. Takata,et al.  Gas separation by means of the Knudsen compressor , 2007 .

[137]  James M. Loy,et al.  A fast hybrid fourier-boltzmann transport equation solver for nongray phonon transport , 2013 .

[138]  Deviational Phonons and Thermal Transport at the Nanoscale , 2012 .