The problem of Cryptosporidium in water is briefly reviewed, with some mention of the effectiveness of available treatment methods. Since conventional disinfection can be much less effective than for other pathogens, it is essential to achieve very high degrees of removal by physical means. Cryptosporidium oocysts are nearly spherical, with a diameter of around 5 μm, and should be no more difficult to remove than other particles of similar properties. Nevertheless, conventional treatment such as flocculation followed by rapid filtration through granular media can allow some oocysts to pass. Specific monitoring methods for Cryptosporidium are available, but these are time-consuming and subject to some uncertainties. They are not suitable for on-line monitoring. Alternative, non-specific monitoring techniques are considered, including turbidity and particle monitoring. It is shown that particles in the oocyst size range are not sensitively detected by conventional turbidity monitoring, and that a very low treated water turbidity may not imply the absence of Cryptosporidium. Similar remarks apply to Giardia cysts. Particle counting instruments or a simpler particle monitor based on turbidity fluctuations, may provide a more reliable indication of the presence of particles a few microns in size, including Cryptosporidium and Giardia. The basic principles of these techniques are reviewed, and some results of laboratory testing and trials in water treatment plants are given Le probleme de Cryptosporidium dans l'eau est brievement passe en revue en mentionnant l'efficacite des methodes de traitement disponibles. Etant donne que la desinfection conventionnelle peut etre bien moins efficace que pour les autres pathogenes, il est essentiel de realiser de hautes valeurs d'elimination par methodes physiques. Les oocystes de Cryptosporidium sont presque spheriques, avec un diametre proche de 5 μm et ne devraient pas etre plus difficiles a eliminer que d'autres particules de proprietes similaires. Neanmoins, un traitement classique comme la floculation suivie par une filtration rapide sur media granulaire peut laisser passer quelques oocystes. Des methodes de controle specifique pour Cryptosporidium sont disponibles mais elles demandent du temps et sont sujettes a irregularites. Elles ne sont pas valables pour le controle en ligne. On considere des techniques de controle alternatives et non specifiques comme le controle de turbidite et de particules. On montre que des particules dans le domaine granulometriques des oocystes ne sont pas detectees avec sensibilite par le controle conventionnel de turbidite et qu'une turbidite tres basse de l'eau traitee n'implique pas l'absence de Cryptosporidium. Des remarques similaires s'appliquent aux cystes de Giardia. Les instruments de comptage particulaire ou un controle de particules plus simple base sur les fluctuations de la turbidite peuvent fournir une indication plus fiable de la presence de particules de quelques microns, parmi lesquelles Cryptosporidium et Giardia. Les principes de base de ces techniques sont passees en revue et l'on donne quelques resultats d'essais de laboratoire et sur unites de traitement d'eau
[1]
Gunther F. Craun,et al.
Surface Water Supplies and Health
,
1988
.
[2]
E. R. Baumann.
Water, its quality, and you!
,
1989
.
[3]
David H. Manz,et al.
Light-Scatter Particle Counting: Improving Filtered-Water Quality
,
1991
.
[4]
J. Rose,et al.
Occurrence of Cryptosporidium oocysts in sewage effluents and selected surface waters.
,
1987,
The Journal of parasitology.
[5]
James K. Edzwald,et al.
Flocculation and Air Requirements for Dissolved Air Flotation
,
1992
.
[6]
J. Gregory.
Turbidity fluctuations in flowing suspensions
,
1985
.
[7]
B. Croll.
Membrane technology : the way forward?
,
1992
.
[8]
J. Gregory,et al.
Monitoring of aggregates in flowing suspensions
,
1986
.
[9]
G. Vesey,et al.
Routine monitoring of Cryptosporidium oocysts in water using flow cytometry.
,
1993,
The Journal of applied bacteriology.
[10]
G. Vesey,et al.
A new method for the concentration of Cryptosporidium oocysts from water.
,
1993,
The Journal of applied bacteriology.
[11]
Gary Stevens,et al.
A Cryptosporidiosis Outbreak in a Filtered‐Water Supply
,
1993
.
[12]
A C Buck,et al.
An outbreak of waterborne cryptosporidiosis in Swindon and Oxfordshire
,
1991,
Epidemiology and Infection.
[13]
J. Rose,et al.
Large community outbreak of cryptosporidiosis due to contamination of a filtered public water supply.
,
1989,
The New England journal of medicine.
[14]
Appiah Amirtharajah,et al.
Effects of particle detachment in granular-media filtration
,
1992
.
[15]
N. A. Sinclair,et al.
Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability
,
1990,
Applied and environmental microbiology.
[16]
Charles R. O'Melia,et al.
Physicochemical Aspects of Particle Removal in Depth Filtration
,
1988
.